
Eurographics Workshop on Intelligent Cinematography and Editing (2017)
W. Bares, V. Gandhi, Q. Galvane, and R. Ronfard (Editors)

Using ECPs for Interactive Applications in Virtual Cinematography

H-Y. Wu1 and T-Y. Li2 and M. Christie1

1IRISA/INRIA Rennes Bretagne Atlantique, Rennes, France
2 National Chengchi University, Taipei, Taiwan

Abstract
This paper introduces an interactive application of our previous work on the Patterns language as creative assistant for editing
cameras in 3D virtual environments. Patterns is a set of vocabulary, which was inspired by professional film practice and
textbook terminology. The vocabulary allows one to define recurrent stylistic constraints on a sequence of shots, which we term
“embedded constraint pattern” (ECP). In our previous work, we proposed a solver that allows us to search for occurrences
of ECPs in annotated data, and showed its use in automated analysis of story and emotional elements of film. This work
implements a new solver that interactively propose framing compositions from an annotated database of framings that conform
to the user-applied ECPs. We envision this work to be incorporated into tools and interfaces for 3D environments in the context
of film pre-visualisation, film or digital arts education, video games, and other related applications in film and multimedia.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism–Animation—I.2.10 [Artificial Intelligence]: Vision and Scene Understanding—Video Analysis

1. Introduction

3D virtual environments have become a formidable platform for
pre-visualisation of films. Film companies and film schools alike
use 3D environments to plan and pre-visualise film cinematogra-
phy without employing real actors, scenes, and props. The popu-
larity of 3D environments is largely due to its accessibility (often
only requiring a computer), and relatively low cost (as compared to
employing real scenarios with real actors). One strong topic of in-
terest and continued challenge lies in tapping the creative potential
of 3D environments, combined with AI algorithms, to be a creative
assistant to the filmmaker by automated generating and proposing
various camera and filming styles.

In our previous work, we have addressed the problem of com-
putational properties of style. We first introduced Patterns, a set
of vocabulary targeted towards describing the computable and
analysable elements of film styles using terminology from actual
film practice [WC15]. We then proposed embedded constraint pat-
terns (ECPs) as a way to define recurring stylistic constraints over
a sequence of shots, and designed a solver for ECPs that allows us
to search annotated film data for occurrences of ECPs in order to
gain insight into story and emotional elements of film [WC16a]
[WC16b]. Automated analysis of actual film data is valuable in
terms of learning from real examples and experience. Imagine its
potential in a creative context, where a smart assistant could pro-
pose from given data, framing compositions for shots in a sequence
of a 3D virtual scene that fulfil certain stylistic constraints defined
by a number of ECPs, such as in Figure 1, changing the on-screen
regions from same to opposite in order to replicate similar stylistic

patterns observed from Pulp Fiction. Currently, there are limited
means of incorporating the combined benefits of annotated film
data and actual film knowledge into 3D environments for interac-
tive applications targeted towards the pre-visualisation or film edu-
cation.

Figure 1: By changing small recurring constraints of on-screen
style, we can create completely different emotional feelings for 3D
animated scenes that replicate those observed in real movies, such
as these in Pulp Fiction.

In this paper we present the Patterns language as a multipurpose

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



H-Y. Wu & T-Y. Li & M. Christie / Using ECPs for Interactive Applications in Virtual Cinematography

language for virtual cinematography applications. We position Pat-
terns and its accompanying ECP solver as a way to (1) describe
complex recurring elements of style in shot sequences using vo-
cabulary from actual film practice, (2) define stylistic constraints
over long shot sequences for creativity contexts, and (3) link exist-
ing annotated film data to an interactive context to propose framing
compositions in 3D environments.

The remaining organisation of the paper is as follows. In the next
section we cover the related work. We then present an overview
of the Patterns language–the vocabulary and definition of ECPs–
and the framing database in which we store annotated film data.
Section 6 then presents the constraint propagation and search algo-
rithms for proposing framing solutions from the framing database
to a user in an interactive context. We illustrate the contributions
in this paper with a number of examples. Finally, we will conclude
with a preview of the currently-in-development usage scenarios of
Patterns and ECPs in interactive creative applications.

2. Related Work

In virtual camera control, film idioms and continuity rules have
been popularly adapted to constraint-based systems. [DZ94] was
one of the first to propose an idiom-like language for constraint-
based cinematography systems that would allow a smooth navi-
gation of the camera through a complex virtual environment like
a museum room. Another early example is the DCCL language
for planning sequences of camera movements [CAH∗96]. Bares
[BGL98] introduces a real-time system for camera placement us-
ing constraint-based approaches, gathering information about the
occurring story events and making decisions on how to best show
the action. The system provides a nice solution to real-time con-
text aware scenarios. Similarly, Bares et al. [BTM00] developed a
constraint-based approach to framing and camera positioning for
virtual cinematography, where the user can specify a number of
constraints on the depth, angle, distance, region, occlusion...etc,
and the camera will find shots that satisfy the decided constraints.
More recently, vocabularies for cinematography have been devel-
oped apart from Patterns. Most notably, the Prose Storyboard Lan-
guage (PSL) [RVB13] was designed based on actual film practice
on shot composition, including vocabulary for elements like size,
region, or movement. In the implementation in [GCR∗13], PSL tar-
gets autonomous camera steering and composition, conducting a
search for suitable camera positions based on PSL constraints. The
first interactive solution was proposed by Lino and Christie [LC15]
by using the toric space to calculate smooth camera transitions that
fulfilled a series of user defined framing compositions. Galvane et
al. [GCLR15] developed the method of virtual camera rails based
on this work, which was inspired by pre-constructed rails for cam-
eras to slide on in actual film sets, calculating smooth camera tra-
jectories around standing or moving actors. However, these solu-
tions do not specifically target the problem of recurring stylistic
constraints in long sequences of shots, as Patterns aims to do.

In terms of applying camera rules or camera style constraints in
editing sequences for multiple shots, [GRLC15] uses semi-Markov
chains to optimise a number of parameters in camera shot and
cut decisions. These decisions are mainly motivated by film prac-
tice of evaluating narrative importance (of actors), observing con-

tinuity, and creating rhythm in the edits. [MBC15] uses Hidden
Markov Models to imitate a director’s decision process when de-
ciding when/how to cut between shots, what shot types to use, and
which actors to focus on. However, these proposed solutions pro-
duce a single edited sequence, and was not designed to be interac-
tive.

3. Overview

In this work we present embedded constraint patterns as a way to
specify stylistic constraints on a sequence of multiple shots, con-
straints that can be complex (e.g. overlapping or embedded) and
recurring (e.g. consistent relations between consecutive shots in the
sequence) for interactive applications in 3D environments.

Taking as input a 3D animation that is cut into a number of shot
segments, with one or more ECPs applied to any number of the
shots, our solver would output recommendations for each shot that
fulfils all the ECPs applied. At the core of these recommendations
is a shot database with annotated framings–character positions, an-
gles, shot sizes, etc.–of actual film clips, from which the solver
filters and selects suitable framings to propose to the user. After
producing an initial solution, the solver is then designed to accept
user interactions such as cutting a shot in two, adding or remov-
ing shots, adjusting shot length, applying an ECP to specific shots
in the sequence, or selecting a specific framing composition for a
shot. On these interactions, the solver in real-time re-filters the shot
database to present framing compositions for each shot that satisfy
all ECPs applied to the sequence.

In the next sections, we will first provide a summary of the vo-
cabulary and syntax of Patterns and ECPs, and we introduce the
shot database. We then introduce our solver for interactive contexts.

4. Patterns Language and Embedded Constraint Patterns

From film textbooks, we have identified a number of visual features
to describe the on-screen characteristics of actors in relation to the
camera: actor position features, movement features, and size and
angle features. Our selection of features closely follows the editing
chapters of a filmmaking textbook [Zet07]. We then use these ele-
ments as constraints to define embedded constraint patterns (ECPs).

This section reviews our previous work on defining the Patterns
language, focusing on those vocabulary used in later sections.

4.1. What is an Embedded Constraint Pattern (ECP)?

The definition of an ECP sets a number of constraints on the visual
features of a sequence of shots. There are 3 types of constraints:
(1) framing, (2) shot relations, and (3) sub-sequence constraints.
Below, we describe each category in detail.

4.1.1. Framing Constraints

Framing constraints restrict how actors are arranged on-screen,
mainly including four visual features: size, angle, region, and
movement. Each of these parameters has strong definitions in liter-
ature. The constraints are applied to actors. We adopt a very broad
definition of actors that incorporates humans, animate creatures,
and objects.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



H-Y. Wu & T-Y. Li & M. Christie / Using ECPs for Interactive Applications in Virtual Cinematography

4.1.1.1. Size Closer cameras create bigger actors, increasing their
importance; conversely, longer camera distance makes the actor
smaller and the less important. We categorise 9 sizes, as defined
by [TB09] with the upper half body filling the screen as the me-
dian Medium Shot. Shot size can also be determined based on the
actor’s head size.

4.1.1.2. Angle Corresponding to the three axes in 3D, the camera
can be rotated horizontally, vertically, and rolling to convey inner
emotional states of characters, or to express relative power relations
between two characters.This value is deduced from the azimuth of
the head relative to the front-facing vector of the actor.

4.1.1.3. Regions Framing region refers to how actors are ar-
ranged in the screen space. Where actors appear on screen has much
to do with aesthetics, but also the inner state of the actors. Patterns
provides a simple set of vocabulary for roughly constraining the re-
gions either by a 4-split or 9-split regions, or simply top/bottom
and le f t/right, as shown in Figure 2.

Figure 2: There are many ways to describe on-screen positions
of actors. In film literature, the most well-known one is the 9-split
standard (purple dotted lines; also referred to as the rule of thirds),
where the screen is split into three regions horizontally and verti-
cally. Patterns provides vocabulary for 9-split, 4-split (blue lines
in the figure; 2 regions both horizontally and vertically), and also
le f t/right (dotted blue line) and upper/lower (solid blue line) re-
gions.

4.1.1.4. The number of targets The number of targets indicates
the relative importance of actors or props in the scene, which are
significant to the current story event.

4.1.2. Shot Relation

Constraints can be placed not only on single framing specifications,
but also the relation between any two shots. Here we refer to rela-
tions as the description of properties between two shots in terms
of on-screen properties: distance, angle, and framing regions. For
example, we may want to search for a sequence of shots that move
gradually closer to actors; or a sequence of shots in which the actors
always appear in the same region in the frame. Relation constraints
provides ECPs with the ability to detect full sequences following
certain constraints, giving a strong advantage over other computa-
tional cinematography languages.

4.1.2.1. Size Relations Changing the distance from one shot to
another can thus show the difference in importance of actors in the
scene, as well as to intensify or relax the atmosphere by moving
closer and further to targets respectively. The distance of the camera
to actors in consecutive framings can either be closer, further, or
remain the same.

4.1.2.2. Angle Relations Angles can carry the meaning of confi-
dence or importance of actors, change of angles between shots can
imply the relative strength of different actors, or change of emo-
tional state for the same actor. Similar to size, angles can be either
higher, lower, or the same angle.

4.1.2.3. Region Relations When actors appear in the same re-
gions on the screen across shots, it often means an agreement, com-
passion, or mutual recognition between the actors. If actors are dis-
tributed on different sides of the horizontal axis (i.e. left and right),
it often carries the meaning of opposition. Patterns provides the ba-
sic values same and its negation !same that can be assigned to the
region (the same 9-split or 4-split region), the horizontalRegion,
and the verticalRegion.

4.2. Defining an ECP - Language and Syntax

An ECP can contain multiple framing and relation constraints. Fur-
ther constraints such as length and embedded sub-sequences can
also be added to ECPs.

We will use the incremental construction of an intensifying
sequence–a sequence where the camera gradually approaches the
actors over a number of shots–to illustrate how an ECP is struc-
tured. We show how the combination of different vocabulary in
Patterns can provide multiple definitions of the intensify ECP.

4.2.1. Sub-Sequences

Embedded sub-sequences are continuous sequences of shots that
follow the constraints of some other ECP, such that the sequence of
shots can be grouped together in the parent ECP. Individual shots
in the sub-sequence are not evaluated by the relation constraints set
by the parent ECP. Suppose we defined a very simplified definition
of intensify as:

intensify{
relation

constraint: closer
sub-sequence

constraint: ’shot’
}

meaning that all shots must have a shot distance relatively closer
than the previous shot, and intensify should be solely comprised
of single shots. Then intensify would be able to match a sequence
of shot sizes [Long shot][Medium shot][Close-up], but it would not
consider [Long shot][Medium shot][Medium shot][Close-up] as in-
tensify since the two middle shots are not closer in relation. Yet,
as a film analyst, this may still be considered an intensify, since the
shot size gradually increases over the whole sequence. To overcome
the limitation, one solution is to allow same-sized shot sequences

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



H-Y. Wu & T-Y. Li & M. Christie / Using ECPs for Interactive Applications in Virtual Cinematography

embedded in the larger intensify sequence. That is, we allow se-
quences of 1 or more same-sized shots that ignore the relation con-
straint of closer.

intensify{
relation

constraint: closer
sub-sequence

constraint: ECP{
relation

constraint: same-size
}

}

Only the first and last shot in the sub-sequence are restricted by
the relation constraint. In this case, the above-described sequence
would still validate as intensify.

4.2.2. Ranges

If the user would like a constraint to only be evaluated once, such
as at the first or last shot of the sequence, or interweave shot sizes
where shots 1, 3, and 5 are CU, and 2, 4, and 6 are LS, it can be
achieved through setting ranges for constraints. A range parameter
that can either be a continuous range expressed as [x-y], a discrete
list < x,y,z... >, or it can be one of the keywords of initial (the
first container in the sequence, equal to < 1 > in the discrete list
representation), all (all containers in the sequence), none (a strong
negating constraint on all containers in the sequence), or end (the
last container of the sequence). In the intensify ECP, we can add
range restrictions to each constraint. By default, range is set to all.

intensify{
framing

constraint: size>=MCU
range: initial

relation
constraint: closer
range: all

sub-sequence
constraint: ECP{

relation
constraint: same-size
range: all

}
range: all

}

4.2.2.1. Length We can also restrict the length of an ECP, which
indirectly affects the number of shots an ECP can match. The length
parameter is targeted towards the number of sub-sequences, and not
the number of shots. Here we add a length constraint to intensify:

intensify{
length

constraint: length>=3
relation

constraint: closer
range: all

sub-sequence
constraint: ECP{

relation
constraint: same-size
range: all

}
range: all

}

The reason for setting a length requirement on sub-sequences in-
stead of number of shots is central to our goal of using Patterns to
define ECPs that capture recurring changes over sequences. Since
the evaluation of relational constraints allows observations only be-
tween sub-sequences, the number of sub-sequences on which a re-
lation constraint is evaluated is much more meaningful than the
actual number of shots in the ECP.

5. A Framing Database

Patterns was designed to work with real film data, and in our pre-
vious work, we established a framing database of framing compo-
sitions. This database contains annotations of 22 film clips from 18
different films of roughly 5 to 10 minutes in length. These clips
were selected from famous scenes in each film based on a YouTube
search. In each selected clip, at least one framing is recorded for
each shot with specific features, namely, when available:

• list of all the actors in the framing
• the head, left eye, and right eye positions of each character in the

framing is annotated
• other significant body parts, such as hand, foot, when the head

and eye positions are not available
• non-animate objects crucial to the story are also annotated
• the angle of the camera relative to the main character
• a frame number (from the actual film clip)

The head is annotated in terms of its size, position, and azimuth
angle while other elements are annotated for their on-screen x and
y positions respectively as a ratio of the width and height of the
screen space.

The above information is sufficient for extracting framings for
most visual constraints included in the Patterns vocabulary that we
described in the previous section, and will remain constant if ap-
plied to a 3D environment. The only exception is shot distance,
which is variable according to the current positions of the actors in
the 3D scene to which we wish to apply a specific framing.

We use the Toric manifold method introduced by [LC15] to cal-
culate a camera position that can realise a framing to two on-screen
targets. When the framing only contains one actor, the two eyes
are designated as the two targets. When the framing contains two
or more actors, the head position of the two most important actors
(based on head size on the screen) are considered as the targets.
With the Toric manifold, we can recalculate a camera position rela-
tive to the virtual actors that realises the framing, and assigns a new
distance value to the framing according to the distance between the
camera and the actor.

Our current database holds 1018 shots, with 1184 framings an-
notated, including a variety of shot types from different camera dis-
tances, angles, and target types.

In the next section, we present the solver whose goal is, given
a list of ECPs applied to specific shots, for each shot propose a
selection of framings from the database that would fulfil all the
ECPs applied to the sequence.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



H-Y. Wu & T-Y. Li & M. Christie / Using ECPs for Interactive Applications in Virtual Cinematography

6. ECP Solver

There are two ways in which we use Patterns in cinematographic
contexts. The first is to search for matching ECP sequences in an-
notated film data, which is the main contribution in our previous
work [WC16a] for the purpose of automated analysis of film style.
We show how ECPs have a close link to elements of storytelling
and emotion. In extension to this, we beleive ECPs can be then used
in creative contexts for virtual cinematography, where one could
imagine generating camera sequences, with the help of annotated
film data, in which the shots pertain to the constraints of an ECP to
create a certain emotion that is linked to the ECP–e.g. intensifica-
tion of emotion using the intensify ECP. This contribution focuses
on this creative aspect. In this section we explain the mechanisms
of the interactive solver, the algorithm for arriving at an initial so-
lution, and how it responds to user interactions such as cuts, edits,
or adding ECPs to a sequence.

6.1. Problem Overview

The aim of the solver is to allow users to apply ECPs to a number
of selected shots in the sequence, and in return the solver would
propose suitable framings for each shot that can fulfill the ECPs.
By applying an instance of an ECP to the selected shots, the user is
setting a constraint to fulfil the ECP on all the shots selected, as a
sequence. The job of the solver component is to remove the framing
specifications (from the shot database of each selected shot) that
violate or cannot fulfil the ECP that the user applies, arriving at an
initial solution: all framing propositions from the framing database
for each shot that fulfills all ECPs if there exists one. Thus, the idea
is to limit the framing specifications that the user can choose from
in each selected shot to only those that can fulfil the ECP instance.

6.1.1. Initial Solution

Algorithm 1 ConstraintPropagate (ECPInstanceList P)
1: ECPListCopy P’=P
2: while P’.count!=0 do
3: ECPInstance e=P’.pop()
4: ECP p = e.ECP
5: ShotSequence S = e.S[x,y]
6: ECPFilter(p,EmptySet,0,S)
7: for all ECPInstance ei ∈ P do
8: for all Shots s ∈ S do
9: if s∈ei.S[x,y] and ei6∈P’ then

10: P’.add(ei)
11: break

The solver initialises each shot with a list of candidate framings
(from the shot database). The main body of the algorithm (Algo-
rithm 1) is a constraint propagation method that maintains and up-
dates an active list of ECP instances that need to be solved. Each
ECP instance contains an ECP and an ordered list of shots S[x,y] to
which the ECP is applied. Algorithm 1 iterates on the list of ECP
instances, and incrementally filters the framing candidates for each
shot in the ECP instance by calling Algorithm 2. Thus at each iter-
ation, Algorithm 1 produces the subset of framing candidates that
fulfils this ECP instance and all the preceding ECP instances. If

the ECP instance removes framings in shots that overlap with other
solved ECP instances, the constraints must be propagated by adding
those affected instances back to the active list of ECP instances so
that they can be re-solved.

Algorithm 2 ECPFilter (ECP p, FramingSeqeunce F, Position pos,
ShotSequence S)

1: if pos<=S.count then
2: for all Framings f ∈ Spos.candidateFramings do
3: F.add(f)
4: ECPFilter(p,F,pos+1,S)
5: F.remove(f)
6: else
7: if IsValidECP(p, EmptySet, F) then
8: for all Framings f in F do
9: f.validate()

Algorithm 2 filters the framings among the candidate framings
for all shots s j ∈ S[x,y]. Each possible framing fi from the candidate
framings must be either validated or rejected as a candidate for s j
in this ECP instance based on the following condition: if there ex-
ists a sequence of framings fx, fx+1, ... fi, ... fy for each shot S[x,y]
that fulfils the constraints set by the ECP (Algorithm 3), then fi
is validated, which means the framing should be available for the
next ECP instance. If no combination containing fi can be vali-
dated, then fi is rejected. At the end of the process, the remaining
framings for each shot are made available to the user for interactive
selection.

Algorithm 3 IsValidECP (ECP p, CurrentSequence C, Sequence
F)

1: if F not empty then
2: fi = f irst(F)
3: if isValidFrame( fi) AND isValidRelation( fi) then
4: if isValidSubsequence(p, C∪{ fi}) then
5: return IsValidECP(p, C∪{ fi},F\{ fi})
6: else if isValidSequence(p, C∪{ fi}) then
7: return IsValidECP(p, { fi}, F\{ fi} )
8: else
9: return False

10: else if ValidateLength(C) then return True
return False

Suppose there is a framing database of n framing specifications
over a sequence of m shots, the complexity of the algorithm would
be at the worst case nm, which makes the algorithm quite slow,
since it is a full search over all possibilities.

6.1.2. Interactive Solving

The solver is called under all circumstances when a new ECP in-
stance is added by the user, when shots are added or removed from
one or more ECP instances, or when a framing is selected for a
shot in one ore more ECP instances. The solver reacts to these three
types of actions as following:

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



H-Y. Wu & T-Y. Li & M. Christie / Using ECPs for Interactive Applications in Virtual Cinematography

Figure 3: The solver for Patterns interface is called both to calculate an initial solution and when a user’s action affects an existing ECP.
This figure shows how the solver filters the available framings for intensify on a five shot sequence, where each shot has the choice of a
long shot (LS), medium shot (MS), and close-up shot (CU). In the initial solution, all framings that have a path from the first shot to the last
are validated. Three possible interactions are then shown below the initial solution. The first is when another ECP, same-szie, is applied to
shots 3 and 4, effectively filtering the LS shot from shot 3. The second interaction is when the shot 4 is deleted from the sequence, the solver
re-evaluates intensify for the remaining shots. The third interaction is when the user selects a LS framing for Shot 3, shots 2 and 4 are filtered
again to only allow framings that have a valid path through the LS framing of Shot 3.

6.1.2.1. A new ECP instance is added: When a new ECP e is
added to the sequence, e is added to the ECPInstanceList P of Al-
gorithm 1. If when solving e, the solver removes framing propo-
sitions from shots with another ECP instance e′, then e′ is added
to the ECPInstanceList P. In this manner, the constraints of e are
propagated to all other overlapping ECPs as well as those indirectly
overlapping. Thus the solver continues to solve for each instance in
P until the algorithm converges, or until no solution can be found
for a specific instance.

6.1.2.2. Adding/Removing of a cut or a shot: The shot s is
added/removed from the range of all overlapping ECP instances,
and all the ECP instances are pushed into the ECPInstanceList P
in Algorithm 1 to be re-evaluated. If no solution exists for an ECP,
the ECP is removed. Each time an ECP is removed or if the ECP
removes proposed framings from a shot, all overlapping ECPs are
pushed into the ECPInstanceList P to be re-evaluated.

6.1.2.3. A framing Fm is selected for a shot Sn: Fm is set as a new
constraint and propagated to overlapping ECP instances. All fram-
ing proposals as well as selected framings for other shots must have
a validated path through Fm for Sn, which means in Algorithm 2,
the list of candidate framings can include only the user-selected
framing when other shots would like to validate their candidate
framings. However, if we simply set Fm as a hard constraint by
removing all other framings of Sn from the candidate framings list,
this would result in only one available framing Fm to select from

for Sn, avoiding the user from changing to another framing that can
also be validated by the whole sequence. Thus, we would still want
to be able to propose for Sn an augmented set of framings where,
despite not the selected framing of the user, still have a valid so-
lution through framings of other shots that have been validated by
all other ECPs and constraints. To accomodate this, we simply add
an additional condition to Algorithm 3 to return true only when the
ECP is validated, and when all other framings in Sequence F are
selected framings (where available). This allows us to “validate” a
framing that is not selected by the user, but still contains a valid
solution in the sequence. This also prevents other shots to use this
augmented set to validate their own framings, since Algorithm 3
will only return true when all other framings apart from the one at
Position pos of Algorithm 2 must be a selected framing if the user
has selected one. Figure 3 shows how a user action of selecting
a framing for a single shot would trigger the solver, and what the
solver would do to uphold the ECPs on the new sequence.

7. Examples

We use a 3D animation of the Back to the Future scene for our
sample scenario. The 79 second scene shows Marty McFly talk-
ing to his father George McFly. In this example, we have cut the
scene into five shots, and applied the intensify ECP to the first three
shots, and the frameshare ECP to the fourth and fifth shot. We then
selected a proposed framing for each of the five shots to have an
edited sequence that fulfils both ECPs on the selected shots. The

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



H-Y. Wu & T-Y. Li & M. Christie / Using ECPs for Interactive Applications in Virtual Cinematography

Figure 4: Here we show (a) a screenshot of our editing tool and (b) four possible framing selections for the same sequence of five shots with
two ECPs output by the interface, intensify and frameshare, applied respectively to shots 1 to 3 and shot 4+5. For all sequences, notice how
the shot size increases for the first three shots–fulfilling the intensify ECP–and how the actors appear on the same side horizontally of the
framing for shots 4 and 5–fulfilling the frameshare ECP.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



H-Y. Wu & T-Y. Li & M. Christie / Using ECPs for Interactive Applications in Virtual Cinematography

accompanying video shows how the interactive solver would ar-
rive at an initial solution and propose further filtered framings for
each interaction. After each interaction, we can see how the fram-
ing database for each shot is filtered. Figure 4 shows four possible
sequences. All the sequences conform to the constraints posed by
the two ECPs.

In using the editing tool, the user can carry out a number of ac-
tions, including:

• carry out basic editing actions such as cuts and adjusting shot
lengths
• browse the framing database and assign a framing to a shot
• select a number of shots and apply a pattern

On applying a pattern, the available framing selections for each
shot will be filtered and reduced to only those that can fulfill the pat-
tern. Likewise, when a framing is selected for a shot with patterns
applied, the framings available to other neighboring shots with the
same overlapping patterns instance will be filtered to conform to the
user’s selected framing. When no solution is found by the solver for
applying a pattern, an error is shown to the users, and the pattern is
not applied.

From this work we are able to see the strengths of the ECP solver
as a creative assistant in an interactive context. First of all, it al-
lows experimentation of various observed camera styles on a 3D
sequence, defined using the Patterns vocabulary. Second, the solver
proposes framings in an educational way by hiding framings that
violate constraints, while making them available again when ECPs
are removed or when the user changes selected framings for a given
shot. Finally, the solver preserves the user’s creative autonomy in
filtering and proposing multiple possible framings for each shot,
but not selecting a solution, and instead, leaves the final decision of
which framing to use for each shot up to the user.

8. Conclusion

In this work we have introduced a way of specifying recurring pat-
terns of style over film sequences for interactive applications. There
are many directions of work that can be extended from the current
status of Patterns. We are at the final stages of carrying out experi-
ments for the assisted creativity application for 3D camera editing
that uses the interactive solver to provide the user smart feedback
during the editing process. In the future we envision developing this
work for educational purposes as well as pre-visualisation of films.
The film database will also be released and made available for other
creative or research applications.

References
[BGL98] BARES W. H., GRÉGOIRE J. P., LESTER J. C.: Realtime

constraint-based cinematography for complex interactive 3D worlds.
In The National Conference On Artificial Intelligence (1998), Citeseer,
pp. 1101–1106. 2

[BTM00] BARES W. H., THAINIMIT S., MCDERMOTT S.: A Model for
Constraint-Based Camera Planning. In AAAI Spring Symposium (Stan-
ford, 2000). 2

[CAH∗96] CHRISTIANSON D. B., ANDERSON S. E., HE L.-W.,
SALESIN D. H., WELD D. S., COHEN M. F.: Declarative camera con-
trol for automatic cinematography. AAAI Conference on Artificial Intel-
ligence (1996). 2

[DZ94] DRUCKER S. M., ZELTZER D.: Intelligent camera control in a
virtual environment. In Graphics Interface âĂŹ94 (1994), pp. 190–199.
2

[GCLR15] GALVANE Q., CHRISTIE M., LINO C., RONFARD R.:
Camera-on-rails : Automated Computation of Constrained Camera
Paths. ACM SIGGRAPH Conference on Motion in Games 2015
(MIG2015) (2015), 151–157. 2

[GCR∗13] GALVANE Q., CHRISTIE M., RONFARD R., LIM C.-K.,
CANI M.-P.: Steering Behaviors for Autonomous Cameras. Proceedings
of Motion on Games - MIG ’13 (2013), 93–102. 2

[GRLC15] GALVANE Q., RONFARD R., LINO C., CHRISTIE M.: Con-
tinuity Editing for 3D Animation. In AAAI Conference on Artificial In-
telligence (Austin, Texas, United States, jan 2015), AAAI Press. 2

[LC15] LINO C., CHRISTIE M.: Intuitive and Efficient Camera Control
with the Toric Space. Transactions on Graphics 34, 4 (2015). 2, 4

[MBC15] MERABTI B., BOUATOUCH K., CHRISTIE M.: A Virtual
Director Using Hidden Markov Models. Computer Graphics Forum
(2015). 2

[RVB13] RONFARD R., VINEET G., BOIRON L.: The Prose Storyboard
Language. In AAAI Workshop on Intelligent Cinematography and Edit-
ing (2013). 2

[TB09] THOMPSON R., BOWEN C. J.: Grammar of the Shot. 2009. 3

[WC15] WU H.-Y., CHRISTIE M.: Stylistic Patterns for Generating Cin-
ematographic Sequences. In Proceedings of Eurographics Workshop on
Intelligent Cinematography and Editing (2015). 1

[WC16a] WU H.-Y., CHRISTIE M.: Analysing Cinematography with
Embedded Constrained Patterns. In Proceeding of Eurographics Work-
shop on Intelligent Cinematography and Editing (2016). 1, 5

[WC16b] WU H.-Y., CHRISTIE M.: Detecting Cinematographic Pat-
terns. In Conference on Cognitive Science and Moving Images 2016
(SCSMI2016) (Ithaca, 2016). 1

[Zet07] ZETTL H.: Sight, sound, motion: Applied media aesthetics.
Wadsworth Publishing Company, 2007. 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.


