

An Intelligent User Interface with Motion Planning for 3D Navigation

Tsai-Yen Li and Hung-Kai Ting
Computer Science Department, National Chengchi University

64, Sec.2, Chih-Nan Road, Taipei, Taiwan 11605, ROC
{li, s8420}@cs.nccu.edu.tw

Abstract

Due to the rapid evolution of graphics hardware, in-
teractive 3D graphics is becoming popular on desktop
personal computers. However, it remains a challenging
task for a novice user equipped with a 2D mouse to navi-
gate in an architectural environment efficiently. We think
the problem is partly due to the fact that precise naviga-
tion control is difficult to achieve with low frame rates. In
this paper, we propose a novel approach to improve the
effectiveness and efficiency of 3D navigation for archi-
tectural walkthrough applications. We adopt a path plan-
ner with probabilistic roadmap to help users avoid un-
necessary maneuvers due to collisions with the environ-
ment. We modify a Java3D implementation of VRML
browser to incorporate the path planner into the user in-
terface. Experiments show that our implementation of
path planner is very efficient and can be seamlessly in-
corporated into the navigation control loop. The overall
navigation time for traversing a sequence of checkpoints
in a maze-like environment can be improved by about a
factor of two if the intelligent user interface is used.

1. Introduction

The developments of 3D graphics standard and 3D

graphics acceleration hardware have greatly sped up the
evolution of interactive 3D graphics on desktop PC’s.
Traditional Virtual Reality (VR) often refers to immersive
applications only. However, its definition has become
broader with the recent development of interactive 3D
graphics on personal computers. Standardization of 3D
graphics format, such as Virtual Reality Modeling Lan-
guage (VRML)[24], contributes to the wide acceptance of
VR on the network. Several browsers supporting this
format have been developed[22][23]. They typically run
as a plug-in of popular web browsers on a regular desktop
PC connected to the network. While this form of VR,
which we shall call desktop VR, is becoming prevalent,
designing a good user interface for a novice user to navi-
gate in a virtual environment remains a great challenge.

A typical VRML browser supports several navigation

modes, such as WALK, FLY, EXAMINE, etc., and almost
all browsers support the WALK mode for applications
such as architectural walkthrough. Most of these browsers
also support collision detection between the viewpoint
and the environment to prevent the viewpoint from pene-
trating obstacles and to increase the degree of realism.
However, under such a navigation mode, a user (even an
expert user) often runs into a situation where the con-
trolled viewpoint gets stuck at certain locations of the
scene. It can neither move forward nor rotate at these lo-
cations without moving backward first. Users often feel
frustrated with this kind of maneuvers especially when the
frame rate is not high enough for smooth, responsive in-
teractions.

We think the main problem is due to the facts that the
level of navigation control that a user need to provide is
too low, and the frame rate for complex scenes is still not
high enough for precise control. There have been inter-
esting philosophical debates on designing intelligent user
interfaces[20]. Direct manipulation has been shown to be
an effective metaphor for interface design since system
behavior is more predictable than the one with intelligent
user interfaces based on agent technologies. However, we
think the premise for this claim is that user interface is
responsive and control is not too tedious. This premise
may not hold for interactive 3D graphics because ma-
nipulating a complex virtual scene with a 2D mouse may
not be efficient and definitely is not very intuitive for
novice users. Nevertheless, mouse inputs by a user can
still, to some degree, reflect a user’s intention about mov-
ing direction. It is simply the problem of the user interface
system that is not smart enough to compute a colli-
sion-free motion to the destination automatically.

In this paper, we propose a novel approach of using ef-
ficient path planning algorithms in the control loop of 3D
interactions to compute collision-free maneuver paths.
From the user’s mouse input, we predict the locations
where the user would like to move to and compute a col-
lision-free path from the current configuration to the pre-
dicted goal configuration. These paths will then be fol-
lowed by the viewpoint unless the user cancels the motion
voluntarily. We implemented an efficient randomized
roadmap planner that has been incorporated into the user

Appear in Proceedings of IEEE VR2000 International Conference.

interface of a common VRML browser. Our experiments
carried out by users of various 3D experiences show that
the overall navigation time can be significantly reduced
with this intelligent user interface.

We organize the rest of the paper as follows. We will
review some related researches in motion planning and
intelligent user interface design in the next section. We
will then review the path-planning algorithm with the
randomized roadmap approach in Section 3. In Section 4
we present our approach to the problem of incorporating
planning into the control loop of user interface. We will
then show the details of our implementation in Section 5,
and the experimental settings, results, and analysis in Sec-
tion 6. Finally, we will conclude our work and discuss
future extensions in the last section.

2. Related Work

The researches pertaining to our work fall into two

categories: 3D user interface design and path planning.
Both of these problems require multidiscipline training to
produce in-depth research results. Traditionally, the issues
of user interface design are addressed in the field of
computer graphics and the path planning problem is stud-
ied mainly in robotics.

2.1. 3D user interface design

User interface has been an indispensable component in

a computer system since the time computers were in-
vented. Many researches have been undertaken to invent
new ways to communicate with a computer and on evalu-
ating the effectiveness of these interfaces. Among them,
being capable of interacting with virtual 3D environments
is a promising trend for future user interface designs.
VR-types of interfaces such as Head Mounted Display
(HMD), 3D tracking devices, data gloves, force feedback
joysticks, etc, are all good examples that are under active
studies and development. New metaphors such as eye-
ball-in-hand, and flying-vehicle-in-hand have been pro-
posed and tested[3]. It is reported that most users like the
idea of eyeball-in-hand metaphor in the context of virtual
space exploration. However, the great challenge still ex-
ists when we are asked to manipulate a 3D virtual scene
only with a regular 2D mouse on a desktop PC. Most pre-
vious work in this direction focused designing intuitive
user interfaces for controlling 3D rotations with 2D de-
vices[6][17].

Most of the aforementioned proposals use the direct
manipulation metaphor. This metaphor is shown to be
more comprehensible, predictable, and controllable than
the delegation types of intelligent user interfaces in sev-
eral application domains. However, it is still under de-
bates which metaphor is more effective in general[20].

We think there will not be a clear-cut answer to this ques-
tion. Instead, effectiveness would greatly depend on the
types of applications, users, and tasks at hand. For exam-
ple, some people may prefer to sit back and take a guided
tour when visiting a new environment while other adven-
turous people may prefer to take the wheel and have a full
navigation control.

Although many intelligent user interfaces have been
proposed in the literature, most of them are not for 3D
manipulation[14][16]. Exceptions include using mo-
tion-planning techniques to provide task-level controls.
For example, Drucker and Zeltzer [4] argue that a
task-level viewpoint control is crucial for exploring vir-
tual scenes such as virtual museums since users should be
allowed to concentrate on scene viewing instead of being
distracted by low-level navigation controls. Li, et al.
[12][13] also proposed an auto-navigation system capable
of generating customized guided tours based on
high-level user inputs. Kuffner [9][10] also utilizes fast
path planning techniques to assist real-time animations.
However, most of these approaches use geometric rea-
soning techniques as a tool for control delegation. They
use a third-person view to specify the desired tasks, which
is very different from the first-person view commonly
used in the direct manipulation metaphor. Other re-
searches also suggest using vector fields [5] or force
fields (such as potential fields) [21][6] to guide animation
or navigation. However, most of them are reactive in na-
ture, and no planning is incorporated to assist interactive
tasks.

2.2. Path planning

The path planning problem (or the so-called Piano

Mover’s Problem) has been extensively studied in the past
two decades. A good survey of path planning algorithms
can be found in [11]. It has been shown to be a
PSPACE-hard problem, and its computational complexity
is exponential in the degrees of freedom (DOF) that the
moving object possesses[19]. Due to the curse of dimen-
sionality, efficient complete path planners exist only for
three or four dimensional configuration space (C-space).
The methods bases on artificial potential fields are good
examples that are reported to be able to solve 2D
path-planning problems in fractions of a second[2].

In the recent years a new path-planning scheme called
random sampling scheme for path planning was proposed.
Experimental and theoretical results show that it is effec-
tive in solving practical problems in various applications
with high dimensionalities[1]. A special version of plan-
ner with this random sampling scheme is called the prob-
abilistic roadmap method[8][18]. In this method, a sig-
nificant amount of time is spent in preprocessing the con-
nectivity information of the C-space such that it can an-
swer path-planning queries afterward in a short amount of

time. This type of planner is good for applications where
static environments can be assumed and several planning
queries are needed.

3. The Path Planner with Randomized

Roadmap

In this paper, we propose a novel approach that incor-

porates efficient path-planning algorithms into the inter-
face control loop to assist user navigation with direct ma-
nipulation (first-person view). The minimal frame rate
(about 10fps, frame per second) for interactive 3D navi-
gation imposes a constraint on the time that one can spend
on planning in each control cycle. This constraint will
then limit the complexity of the planning problem that we
can consider in our system. In this section we will de-
scribe the path-planning problem under consideration and
some reasonable assumptions we made in the system. We
will also briefly describe the randomized roadmap algo-
rithm we adopt and explain why it is adequate for our
application.

3.1. The path-planning problem

Instead of considering the general 3D interaction

problem, we only consider the problem of 3D navigation
for applications such as architectural walkthrough. Al-
most all VRML browsers support this type of WALK
mode. In architectural walkthrough, we can reasonably
assume that the viewpoint stays on a horizontal plane.
Therefore the virtual camera (representing the viewpoint)
and the obstacles in the virtual environment can be rea-
sonably represented by 2D polygons. The virtual camera
can move freely in the plane and therefore possesses 3
DOF.

Many efficient path planners are reported to be able to
compute a collision-free path in fractions of a second for
environments of reasonable complexity. According to the
way that they are used, these planners fall into two cate-
gories: one-shot and many-shot. One-shot planners do not
make assumptions about the environment and simply take
the world description at run time. However, it might take
a few seconds in the worst case for these planners to come
up with a collision-free path. On the other hand, the
many-shot planners, such as the randomized roadmap
planner adopted in our system, may spend a reasonable
amount of time initially in preprocessing the configura-
tion space for future path-planning queries. These plan-
ners usually assume that the environment does not change
frequently; otherwise, they will need to redo the preproc-
essing step whenever the environment changes. The plan-
ning times for these planners are better bounded since the
planning problem can usually be reduced to only a graph
search problem at run time. Therefore, this type of plan-

ners is more suitable for real-time user interactions.

3.2. The randomized roadmap planner

The path planner with the randomized roadmap ap-

proach, which we shall call the roadmap planner, belongs
to the category of many-shot planners. It consists of two
phases: learning phase and query phase. In the learning
phase, the planner samples the C-space and builds a con-
nectivity graph for the freespace (the set of collision-free
configurations). Several strategies have been proposed in
the robotics literature to perform the sampling. After
enough configurations are sampled in the freespace, the
planner will try to connect nearby configurations with a
simple path computed by a local planner. The result is a
connectivity graph capturing the topological structure of
the freespace. An example of the roadmap is shown in
Figure 1. This graph consists of 512 nodes connected in a
3D C-space. However, for clarity, the graph in Figure 1 is
drawn directly in the 2D workspace by ignoring the ori-
entation component of a configuration.

In the query phase, the planner is given a pair of con-
figurations (the initial and goal configurations, denoted by
qi and qg, respectively) and is asked to find a colli-
sion-free path connecting them. The roadmap planner will
first try to connect qi and qg to any nodes, say qi’ and qg’,
respectively, in the connectivity graph and then search the
graph for a path connecting qi’ and qg’. The path connect-
ing qi and qg can then be constructed by concatenating
path segments generated by the deterministic local plan-
ner. Since the graph search does not involve any expen-
sive collision checks and the number of nodes in the
graph is relatively small, the search time is usually quite
small. A post-processing step is then applied to this path
in order to produce a shorter and smoother path.

There exist several empirical parameters that one can
tune to produce good results efficiently. For example, the
required number of sampled configurations for a good

Figure 1. A sample probabilistic roadmap

qi’

qi

qg’

qg

representation of the C-space might be different for dif-
ferent environments. The more configurations are sam-
pled and connected, the more time needs to be spent on
the graph search, and also the more likely two configura-
tions can be successfully connected. In addition, since the
planner is probabilistic in nature, there could exist cases
where the planner fails to find a feasible path that actually
exists. However, for the user interface application we
consider in this paper, we use the planner only as naviga-
tion assistance. Occasional failures do not cause fatal ef-
fects on the user interface. In fact, most of the planning
problem instances encountered in this application are not
very difficult. We would usually prefer an early failure
instead of a long-waiting success since it might cause
undesirable congestion in navigation control.

4. Intelligent 3D User Interface

4.1. Traditional user control loop

In an interactive 3D graphics program, such as a

VRML browser, a user specifies his/her navigation com-
mands through a 2D mouse. A typical program flow for a
VRML browser consists of two threads: input and anima-
tion. The user-input thread is event-driven while the ani-
mation thread is busy-looping. A typical operation would
require the user to drag a vector in the browser to repre-
sent the viewpoint velocity vector v. This velocity vector
in the canvas space will be decomposed into a horizontal
and a vertical component. The horizontal component, vx,
often refers to the rotational velocity while the vertical
component, vy, often means the linear velocity along the
forward or backward directions. The input thread updates
this motion vector whenever the mouse is dragged.

On the other hand, the animation thread loops indefi-
nitely to perform configuration updates based on this ve-
locity vector and then render the scene according to the
updated viewpoint. In order to perform real-time naviga-
tion such that the distance traveled will not depend on the
speed of the computer, the browser will multiply vx and vy

by the time interval δ t between two frame updates to ob-
tain the displacement transformation T. T will then be
multiplied by the current configuration qi to obtain the
next viewpoint configuration qg (qg = T x qi). Browsers
usually perform collision checks along the translation
vector (denoted by d) between qi and qg. If a potential
collision might result from the movement, the viewpoint
update will not be performed. This is the situation when
the user might get stuck at a certain location. It is very
often that the user has to move backward first in order to
escape the trapping situation.

4.2. Predicting user intention

In our system we propose to modify the animation loop
such that the system will not give up movements in the
situations where potential collisions might happen. In-
stead, the system will try to find a collision-free path for
the viewpoint to follow whenever collisions are detected.
We achieve this by maintaining a queue of collision-free
configurations in the animation loop. Whenever the queue
becomes empty, the system will try to fill the queue by
generating a collision-free path according to the current
velocity vector.

Now the problem becomes how the system predicts the
intention of the user implied by the vector v. In other
words, how does the system specify qg for defining an
appropriate path-planning problem? There are three main
cases to account for according to the legality of qg and
how it can be adjusted. These cases, as depicted in Figure
2, are described as follows.

A. No modification: the projected qg is legal, such as
the A1 and A2 cases.

B. Direct modification: the projected qg is illegal but it
can be modified along d to become collision-free,
such as the B1 and B2 cases. In our current system,
qg will be set to the first free configuration across the
obstacle whenever possible (the B2 case). If not
possible, it will be set to the farthest free configura-
tion along d (the B1 case).

C. Indirect modification: the projected qg is illegal but
there exist no legal configurations along d (the C
case). In this case, qi already touches obstacle
boundary, and there are no legal qg along the current
forward direction. Therefore, qg must be moved out
of d. In our current system, we place qg on the tan-
gential component of d along the obstacle boundary.

By predicting the intention of the user, the system tries
to move qg to a nearby free configuration according to d.
With these possible modifications, the path-planning
problem for the user interface can then be clearly defined.

4.3. Computing smooth maneuver paths

Figure 2. Possible goal configurations and their
modifications

A1

current
viewpoint

B1

C
obstacles

B2’

B1’

C’

A2 B2

After an appropriate goal for path planning is specified,
three types of results may be produced:

I. Trivial path: there exist no obstacles between qi
and qg, and therefore, a trivial straight-line path
would be sufficient. For instance, cases A1, B1’,
and C’, as shown in Figure 2, all result in
straight-line paths.

II. Non-trivial path: there is no straight-line path
between qi and qg, and therefore, the path planner
described in the previous section needs to be called
to compute a feasible path. If a path is found, it
will be smoothed and appropriately parameterized
before putting to the configuration queue in the
animation loop for execution.

III. No path: although both qi and qg are collision-free,
the path planner fails to find a collision-free path
connecting them. The configuration queue in the
animation loop will remain empty, and no actions
will be taken.

A user is allowed to intercept the execution of the path
at any time by giving the system a cue such as releasing
the mouse buttons or making a sharp turn. These cues are
designed to be consistent with conventions used in normal
navigation operations. In the current system, when a path
τ is generated, we also record the dragged vector vτ asso-
ciated with τ. If the current vector v deviates from vτ for a
certain threshold, the configuration queue in the anima-
tion loop will be flushed to empty, and the path is recom-
puted. Releasing the mouse buttons is treated as special
case where v becomes null.

5. Implementation

5.1. Connecting to a VRML browser

In order to make the research result more portable in

the future, we choose to modify the open source VRML
browser implemented based on the Java3D SDK library.
This SDK and the VRML browser are all available for
FTP on the public domain[25]. In this library, we have
mainly modified the routine for processing mouse events
and the routine for updating the next viewpoint configura-
tion. At the time of our implementation, this VRML
browser does not support collision detection yet. There-
fore, we have enhanced the browser with our implementa-
tion of collision detection routines. They are called in the
viewpoint update routine to prevent potential collisions
even when the path planner is not used.

5.2. The randomized roadmap planner

The roadmap planner has been implemented in the

Java language. Two files are read by the system. The
VRML browser reads in the VRML model of architec-

tural environment, while the path planner reads in the
corresponding 2D data file describing obstacle configura-
tions. A separated maze editor has also been implemented
to create and maintain both files consistently.

When the system starts up, we precompute the C-space
obstacles with a well-known linear-time algorithm[15].
We store this information in a 3D bitmap of 128x128x128
for future collision detection lookups. In the learning
phase of the roadmap planner, we perform a uniform
sampling in the C-space. We uniformly divide the space
into 8x8x8=512 regions and randomly sample up to four
free configurations in each region. The system gives up
sampling on a region after 20 trials. After the sampling
step, the system will try to connect all pairs of nodes in
the same or neighboring regions with collision-free
straight-line paths. Therefore, there are up to 1024 inter-
connected nodes in the roadmap after the learning phase.

In the query phase, we first connect qi and qg to some
nodes qi’ and qg’ in the roadmap graph, respectively. Close
nodes are tried first. After these starting and ending nodes
in the graph are found, we use a modified A* algorithm to
search for a path connecting these two nodes. If a feasible
path in the graph is found, the straight-line segments
along the graph path will then be concatenated to form the
final geometric path. A smoothing routine will then be
called to reduce the path length and increase its quality.

Figure 3. Top view of the maze environment

Figure 4. A snapshot of the VRML browser

6. Experiments

Ten people were invited to test the implemented sys-

tem. Eight of them are undergraduate students. Six of
them major in Computer Science but only two use VRML
browsers frequently. The other two testers do not use
computers regularly. They are given a short instruction
about how to use the browser and three minutes to warm
up before the experiments start. In order to compare the
effects of incorporating planning into the system, an ex-
periment consists of two runs (with and without planning)
of the same task sequence. In order to avoid unnecessary
biases created by practice time, the run with planning is
always done first.

6.1. Experimental settings

The experiments were carried out on a regular PC with

a Celeron 300A processor. The experimental scenario
consists of six checkpoints in a maze-like environment for
a user to visit sequentially. A top view of this environ-
ment is shown in Figure 3. A user navigates in the maze
with a first-person view and the WALK mode provided by
the VRML browser. A bouncing ball is used to help a user
identify the targeting checkpoint. An example of the ren-
dered 3D scene is shown in Figure 4. In order to assist a
user in finding the next checkpoint, we also provide a
2D-layout map, as shown in Figure 5, at the side of the
VRML browser window. In each experiment, a user has
to move the viewpoint from checkpoint A through
checkpoint F as quickly as possible.

6.2. Experimental results

The experimental results consist of two parts: objective

statistic data and subjective user comments. The com-
parisons of the system with and without planning are
summarized in Table 1. The numbers are based on the
average of the ten testers. The overall times taken to com-
plete the requested task are 243 and 421 seconds, respec-

tively, for the system run with and without planning. The
performance speedup for the interface with planning is
about 73%. In term of movement steps, about one third of
the steps are saved after the planner is used. The cost to
pay is that the system has to spend about 2.5 seconds in
total to preprocess a given environment and about an av-
erage of additional 11.5 ms in each step to determine the
next viewpoint configuration. (It still takes some time for
the interface without planning to detect collisions.) The
overall extra time spent on planning only consists of
6.21% of the overall execution time.

The subjective user feedback for the user interface
with planning is positive in general. Some of the users
may find the viewpoint hard to control in the beginning
(especially for those who like to play games with key-
boards) but all of them can get used to the control very
soon. Once they are in a good command of the interface,
navigation efficiency is greatly improved. In summary,
they all regard the path-planning capability as a very con-
siderate and desirable feature for a 3D VRML browser.

6.3. Analysis

In order to understand how path planning is used in our

Figure 5. A 2D-layout map of the maze

Table 2. Statistic data of ten users using the
intelligent interface

 n1 n2 n3 n4 n5 t1 t2 t3
u1 746 1644 888 30 19 2.01 129.4 281.5
u2 790 1592 773 36 17 1.44 124.9 287.5
u3 908 1653 736 65 50 3.05 209.2 471.4
u4 1476 2592 1117 87 63 3.15 220.5 427.7
u5 2737 3106 361 36 13 0.98 239.9 332.1
u6 2451 3070 640 36 14 1.30 261.4 335.5
u7 2091 2430 295 72 84 3.39 249.4 332.1
u8 1430 2419 972 59 39 2.66 238.1 585.2
u9 1861 2988 1024 104 93 4.25 370.9 514.8
u10 2942 3486 523 50 23 1.61 384.9 607.4
avg. 1743 2498 733 58 42 2.38 242.9 420.7

n1: no of generated paths n2: no of generated steps
n3: no of planner generated steps n4: no of planning called
n5: no of paths being cancelled during their executions
t1: total path-planning time (sec)
t2: total execution time with planning (sec)
t3: total execution time without planning (sec)

Table 1: comparison of navigation efficiency
with or without path planning

 w/ planning w/o planning
total execution time(sec) 243 421
no of navigation steps 2498 3941
preprocessing time (sec) 2.5 0
avg. time for computing
the next step (ms) 18.9 7.4

start

location

B

A

C

D

F E

walkthrough experiments, we take a closer look at the
statistic data collected from the ten experiments, as listed
in Table 2. The number n1 in the second column is the
number of paths (including type I and type II paths in
subsection 4.3) and n2 is the number of steps generated
for execution during an experiment. Although the number
of calls to the path planner (n4) is not very high, total
number of steps (n3) in these nontrivial paths constitutes a
great portion (about one third) of n2. Typical paths gener-
ated by the planner, depicted as sequences of dots, are
shown in Figure 6. The numbers beside the paths are their
lengths. During the navigation, some paths (trivial or
nontrivial) (n5) were cancelled due to significant deviation
from the original user intention. The total time spent on
path searching in the roadmap planner (t1) is only a small
portion of the overall execution time (t2). Compared to the
execution time for the interface without planning (t3), the
intelligent user interface with planning indeed results in
consistent and significant improvements.

7. Conclusions and Future Work

In this paper, we have proposed a novel approach to

designing an intelligent user interface for architectural
walkthrough applications. A path planner with a random-
ized roadmap approach is used to assist a user in navigat-
ing through difficult areas where a user often get stuck
with traditional user interfaces. This planner has been
successfully integrated with the low-level control loop in
a VRML browser. Our preliminary experimental results
show that, with the help of the planner, the overall navi-
gation time can be consistently and significantly saved.
We believe that this intelligent user interface is effective
because it delegate some of the geometric reasoning tasks
to the computer while retaining the advantages of direct
manipulation.

There exist limitations on our current implementation.
For example, we currently assume a static and bounded
workspace in our path planner to facilitate roadmap con-
struction. However, it is more desirable (for path planning
in general) to be able to consider dynamic and unbounded
workspace possibly with incremental roadmap construc-
tion. The effect of path planning on the walkthrough type
of 3D-interface design deserves further studies. For ex-
ample, more experiments need to be carried out for dif-
ferent tasks, on different virtual scenes, and on different
systems of various computing powers. We think that the
effects will even more significant for complex scenes on
slower machines.

Acknowledgments

This work was partially supported by grants from the

National Science Council, ROC, under contracts NSC
88-2815-C-004-001-E and NSC 89-2218-E-004-001.

References

[1] J. Barraquand, L. Kavraki, J.C. Latombe, T.Y. Li, and P.

Raghavan, “A Random Sampling Scheme for Path Plan-
ning,” in International Journal of Robotics Research,
16(6), P759-774, December, 1997.

[2] J. Barraquand and J. Latombe, “Robot Motion Planning: A
Distributed Representation Approach,” International
Journal of Robotics Research, 10:628-649, 1991.

[3] Chen, Mountford, and Sellen, “A Study in Interactive 3D
Rotation Using 2D Control Devices,” Computer Graphics,
22(4):121-128 ,1988.

[4] S. M. Drucker and D. Zeltzer, “Intelligent Camera Control
in a Virtual Environment,” Graphics Interface’94, pp.
190-199, 1994.

[5] P. K. Egbert, and S. H. Winkler, “Collision-Free Object
Movement Using Vector Fields,” in IEEE Computer
Graphics and Applications, 16(4):18-24, July, 1996.

[6] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He,
“Virtual Voyage: Interactive Navigation in the Human
Colon,” in Proceedings of SIGGRAPH’97 Conference, pp
27-35, 1997.

[7] M.R. Jung, D. Paik, D. Kim, “A Camera Control Interface
Based on the Visualization of Subspaces of the 6D Motion
Space of the Camera,” in Proceedings of IEEE Pacific
Graphics’98, 1998.

[8] L. Kavraki, P.Svestka, J. Latombe, and M. Overmars,
“Probabilistic Roadmaps for Fast Path Planning in
High-Dimensional Configuration Spaces,” IEEE Transac-
tion on Robotics and Automation, 12:566-580, 1996.

[9] J.J. Kuffner. "Goal-Directed Navigation for Animated
Characters Using Real-Time Path Planning and Control".
In Proceedings of CAPTECH '98: Workshop on Modelling
and Motion Capture Techniques for Virtual Environments,
Geneva, Switzerland, Nov. 26-28, 1998.

Figure 6. Planner-generated non-trivial paths

A

B

C

D

[10] J.J. Kuffner and J.C. Latombe. "Fast Synthetic Vision,
Memory, and Learning Models for Virtual Humans". In
Proceedings of CA '99: IEEE International Conference on
Computer Animation, Geneva, Switzerland, May 26-29,
1999.

[11] J. Latombe, Robot Motion Planning, Kluwer, Boston, MA,
1991.

[12] T.Y. Li, L.K. Gan, and C.F. Su, “Generating Customizable
Guided Tours for Networked Virtual Environment,” in
Proceedings of 1997 National Computer Symposium
(NCS’97), Taichung. Dec.1997.

[13] T.Y. Li, J.M. Lien, S.Y. Chiu, and T.H. Yu, “Automatically
Generating Virtual Guided Tours,” in Proceedings of the
Computer Animation '99 Conference, Geneva, Switzerland,
pp99-106, May 1999.

[14] H. Lieberman, “Integrating User Interface Agents with
Conventional Applications,” in Proceedings of ACM Con-
ference on Intelligent User Interfaces, San Francisco,
January 1998.

[15] T. Lozano-Perez, “Spatial Planning: A Configuration
Space Approach,” in IEEE Transactions on Computers,
32(2):108-120, 1983.

[16] M. Maybury and W. Wahster (eds), Readings in Intelligent
User Interfaces, Morgan Kaufmann: Menlo Park, CA.

[17] Neilson and Olsen, “Direct Manipulation Techniques for

3D Objects Using 2D Locator Devices,” in Proceedings of
the 1986 Workshop on Interactive 3D Graphics, pp
175-182, 1986.

[18] M. Overmars, and P. Svestka, “A Probabilistic Learning
Approach to Motion Planning,” in the Proceedings of the
1994 Workshop on the Algorithmic Foundations of Robot-
ics, pp19-37, 1994.

[19] J.H. Reif, “Complexity of the Mover's Problem and Gen-
eralizations,” in Proceedings of the 20th IEEE Symposium
on Foundations of Computer Science, pp. 421-427, 1979.

[20] B. Shneiderman and P. Maes, “Direct Manipulation vs.
Interface Agents,” Interactions, 4(6): 42-61, Nov./Dec.
1997.

[21] D. Xiao, R. Hubbold, “Navigation Guided by Artificial
Force Fields, “ in Proceedings of the ACM CHI’98 Con-
ference, pp179-186, 1998.

[22] WorldView VRML browser, URL:
http://www.intervista.com/

[23] CosmoPlayer VRML browser, URL:
http://www.cosmosoftware.com/

[24] VRML97 International Standard, URL:
http://www.web3d.org/technicalinfo/specifications/vrml97
/index.htm

[25] The Java3D and VRML working group,
http://www.vrml.org/WorkingGroups/vrml-java3d

