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Abstract 
 

Due to the rapid evolution of graphics hardware, in-
teractive 3D graphics is becoming popular on desktop 
personal computers. However, it remains a challenging 
task for a novice user equipped with a 2D mouse to navi-
gate in an architectural environment efficiently. We think 
the problem is partly due to the fact that precise naviga-
tion control is difficult to achieve with low frame rates. In 
this paper, we propose a novel approach to improve the 
effectiveness and efficiency of 3D navigation for archi-
tectural walkthrough applications. We adopt a path plan-
ner with probabilistic roadmap to help users avoid un-
necessary maneuvers due to collisions with the environ-
ment. We modify a Java3D implementation of VRML 
browser to incorporate the path planner into the user in-
terface. Experiments show that our implementation of 
path planner is very efficient and can be seamlessly in-
corporated into the navigation control loop. The overall 
navigation time for traversing a sequence of checkpoints 
in a maze-like environment can be improved by about a 
factor of two if the intelligent user interface is used.  
 
1. Introduction 

 
The developments of 3D graphics standard and 3D 

graphics acceleration hardware have greatly sped up the 
evolution of interactive 3D graphics on desktop PC’s. 
Traditional Virtual Reality (VR) often refers to immersive 
applications only. However, its definition has become 
broader with the recent development of interactive 3D 
graphics on personal computers. Standardization of 3D 
graphics format, such as Virtual Reality Modeling Lan-
guage (VRML)[24], contributes to the wide acceptance of 
VR on the network. Several browsers supporting this 
format have been developed[22][23]. They typically run 
as a plug-in of popular web browsers on a regular desktop 
PC connected to the network. While this form of VR, 
which we shall call desktop VR, is becoming prevalent, 
designing a good user interface for a novice user to navi-
gate in a virtual environment remains a great challenge.  

A typical VRML browser supports several navigation 

modes, such as WALK, FLY, EXAMINE, etc., and almost 
all browsers support the WALK mode for applications 
such as architectural walkthrough. Most of these browsers 
also support collision detection between the viewpoint 
and the environment to prevent the viewpoint from pene-
trating obstacles and to increase the degree of realism. 
However, under such a navigation mode, a user (even an 
expert user) often runs into a situation where the con-
trolled viewpoint gets stuck at certain locations of the 
scene. It can neither move forward nor rotate at these lo-
cations without moving backward first. Users often feel 
frustrated with this kind of maneuvers especially when the 
frame rate is not high enough for smooth, responsive in-
teractions.  

We think the main problem is due to the facts that the 
level of navigation control that a user need to provide is 
too low, and the frame rate for complex scenes is still not 
high enough for precise control. There have been inter-
esting philosophical debates on designing intelligent user 
interfaces[20]. Direct manipulation has been shown to be 
an effective metaphor for interface design since system 
behavior is more predictable than the one with intelligent 
user interfaces based on agent technologies. However, we 
think the premise for this claim is that user interface is 
responsive and control is not too tedious. This premise 
may not hold for interactive 3D graphics because ma-
nipulating a complex virtual scene with a 2D mouse may 
not be efficient and definitely is not very intuitive for 
novice users. Nevertheless, mouse inputs by a user can 
still, to some degree, reflect a user’s intention about mov-
ing direction. It is simply the problem of the user interface 
system that is not smart enough to compute a colli-
sion-free motion to the destination automatically.  

In this paper, we propose a novel approach of using ef-
ficient path planning algorithms in the control loop of 3D 
interactions to compute collision-free maneuver paths. 
From the user’s mouse input, we predict the locations 
where the user would like to move to and compute a col-
lision-free path from the current configuration to the pre-
dicted goal configuration. These paths will then be fol-
lowed by the viewpoint unless the user cancels the motion 
voluntarily. We implemented an efficient randomized 
roadmap planner that has been incorporated into the user 
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interface of a common VRML browser. Our experiments 
carried out by users of various 3D experiences show that 
the overall navigation time can be significantly reduced 
with this intelligent user interface.  

We organize the rest of the paper as follows. We will 
review some related researches in motion planning and 
intelligent user interface design in the next section. We 
will then review the path-planning algorithm with the 
randomized roadmap approach in Section 3. In Section 4 
we present our approach to the problem of incorporating 
planning into the control loop of user interface. We will 
then show the details of our implementation in Section 5, 
and the experimental settings, results, and analysis in Sec-
tion 6. Finally, we will conclude our work and discuss 
future extensions in the last section. 

 
2. Related Work 

 
The researches pertaining to our work fall into two 

categories: 3D user interface design and path planning. 
Both of these problems require multidiscipline training to 
produce in-depth research results. Traditionally, the issues 
of user interface design are addressed in the field of 
computer graphics and the path planning problem is stud-
ied mainly in robotics.  
 
2.1. 3D user interface design 

 
User interface has been an indispensable component in 

a computer system since the time computers were in-
vented. Many researches have been undertaken to invent 
new ways to communicate with a computer and on evalu-
ating the effectiveness of these interfaces. Among them, 
being capable of interacting with virtual 3D environments 
is a promising trend for future user interface designs. 
VR-types of interfaces such as Head Mounted Display 
(HMD), 3D tracking devices, data gloves, force feedback 
joysticks, etc, are all good examples that are under active 
studies and development. New metaphors such as eye-
ball-in-hand, and flying-vehicle-in-hand have been pro-
posed and tested[3]. It is reported that most users like the 
idea of eyeball-in-hand metaphor in the context of virtual 
space exploration. However, the great challenge still ex-
ists when we are asked to manipulate a 3D virtual scene 
only with a regular 2D mouse on a desktop PC. Most pre-
vious work in this direction focused designing intuitive 
user interfaces for controlling 3D rotations with 2D de-
vices[6][17].  

Most of the aforementioned proposals use the direct 
manipulation metaphor. This metaphor is shown to be 
more comprehensible, predictable, and controllable than 
the delegation types of intelligent user interfaces in sev-
eral application domains. However, it is still under de-
bates which metaphor is more effective in general[20]. 

We think there will not be a clear-cut answer to this ques-
tion. Instead, effectiveness would greatly depend on the 
types of applications, users, and tasks at hand. For exam-
ple, some people may prefer to sit back and take a guided 
tour when visiting a new environment while other adven-
turous people may prefer to take the wheel and have a full 
navigation control.  

Although many intelligent user interfaces have been 
proposed in the literature, most of them are not for 3D 
manipulation[14][16]. Exceptions include using mo-
tion-planning techniques to provide task-level controls. 
For example, Drucker and Zeltzer [4] argue that a 
task-level viewpoint control is crucial for exploring vir-
tual scenes such as virtual museums since users should be 
allowed to concentrate on scene viewing instead of being 
distracted by low-level navigation controls. Li, et al. 
[12][13] also proposed an auto-navigation system capable 
of generating customized guided tours based on 
high-level user inputs. Kuffner [9][10] also utilizes fast 
path planning techniques to assist real-time animations. 
However, most of these approaches use geometric rea-
soning techniques as a tool for control delegation. They 
use a third-person view to specify the desired tasks, which 
is very different from the first-person view commonly 
used in the direct manipulation metaphor. Other re-
searches also suggest using vector fields [5] or force 
fields (such as potential fields) [21][6] to guide animation 
or navigation. However, most of them are reactive in na-
ture, and no planning is incorporated to assist interactive 
tasks. 

 
2.2. Path planning 

 
The path planning problem (or the so-called Piano 

Mover’s Problem) has been extensively studied in the past 
two decades. A good survey of path planning algorithms 
can be found in [11]. It has been shown to be a 
PSPACE-hard problem, and its computational complexity 
is exponential in the degrees of freedom (DOF) that the 
moving object possesses[19]. Due to the curse of dimen-
sionality, efficient complete path planners exist only for 
three or four dimensional configuration space (C-space). 
The methods bases on artificial potential fields are good 
examples that are reported to be able to solve 2D 
path-planning problems in fractions of a second[2].  

In the recent years a new path-planning scheme called 
random sampling scheme for path planning was proposed. 
Experimental and theoretical results show that it is effec-
tive in solving practical problems in various applications 
with high dimensionalities[1]. A special version of plan-
ner with this random sampling scheme is called the prob-
abilistic roadmap method[8][18]. In this method, a sig-
nificant amount of time is spent in preprocessing the con-
nectivity information of the C-space such that it can an-
swer path-planning queries afterward in a short amount of 



time. This type of planner is good for applications where 
static environments can be assumed and several planning 
queries are needed.  

 
3. The Path Planner with Randomized 

Roadmap 
 
In this paper, we propose a novel approach that incor-

porates efficient path-planning algorithms into the inter-
face control loop to assist user navigation with direct ma-
nipulation (first-person view). The minimal frame rate 
(about 10fps, frame per second) for interactive 3D navi-
gation imposes a constraint on the time that one can spend 
on planning in each control cycle. This constraint will 
then limit the complexity of the planning problem that we 
can consider in our system. In this section we will de-
scribe the path-planning problem under consideration and 
some reasonable assumptions we made in the system. We 
will also briefly describe the randomized roadmap algo-
rithm we adopt and explain why it is adequate for our 
application.  

 
3.1. The path-planning problem 

 
Instead of considering the general 3D interaction 

problem, we only consider the problem of 3D navigation 
for applications such as architectural walkthrough. Al-
most all VRML browsers support this type of WALK 
mode. In architectural walkthrough, we can reasonably 
assume that the viewpoint stays on a horizontal plane. 
Therefore the virtual camera (representing the viewpoint) 
and the obstacles in the virtual environment can be rea-
sonably represented by 2D polygons. The virtual camera 
can move freely in the plane and therefore possesses 3 
DOF.  

Many efficient path planners are reported to be able to 
compute a collision-free path in fractions of a second for 
environments of reasonable complexity. According to the 
way that they are used, these planners fall into two cate-
gories: one-shot and many-shot. One-shot planners do not 
make assumptions about the environment and simply take 
the world description at run time. However, it might take 
a few seconds in the worst case for these planners to come 
up with a collision-free path. On the other hand, the 
many-shot planners, such as the randomized roadmap 
planner adopted in our system, may spend a reasonable 
amount of time initially in preprocessing the configura-
tion space for future path-planning queries. These plan-
ners usually assume that the environment does not change 
frequently; otherwise, they will need to redo the preproc-
essing step whenever the environment changes. The plan-
ning times for these planners are better bounded since the 
planning problem can usually be reduced to only a graph 
search problem at run time. Therefore, this type of plan-

ners is more suitable for real-time user interactions. 
 

3.2. The randomized roadmap planner 
 
The path planner with the randomized roadmap ap-

proach, which we shall call the roadmap planner, belongs 
to the category of many-shot planners. It consists of two 
phases: learning phase and query phase. In the learning 
phase, the planner samples the C-space and builds a con-
nectivity graph for the freespace (the set of collision-free 
configurations). Several strategies have been proposed in 
the robotics literature to perform the sampling. After 
enough configurations are sampled in the freespace, the 
planner will try to connect nearby configurations with a 
simple path computed by a local planner. The result is a 
connectivity graph capturing the topological structure of 
the freespace. An example of the roadmap is shown in 
Figure 1. This graph consists of 512 nodes connected in a 
3D C-space. However, for clarity, the graph in Figure 1 is 
drawn directly in the 2D workspace by ignoring the ori-
entation component of a configuration.  

In the query phase, the planner is given a pair of con-
figurations (the initial and goal configurations, denoted by 
qi and qg, respectively) and is asked to find a colli-
sion-free path connecting them. The roadmap planner will 
first try to connect qi and qg to any nodes, say qi’ and qg’, 
respectively, in the connectivity graph and then search the 
graph for a path connecting qi’ and qg’. The path connect-
ing qi and qg can then be constructed by concatenating 
path segments generated by the deterministic local plan-
ner. Since the graph search does not involve any expen-
sive collision checks and the number of nodes in the 
graph is relatively small, the search time is usually quite 
small. A post-processing step is then applied to this path 
in order to produce a shorter and smoother path. 

There exist several empirical parameters that one can 
tune to produce good results efficiently. For example, the 
required number of sampled configurations for a good 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A sample probabilistic roadmap  
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representation of the C-space might be different for dif-
ferent environments. The more configurations are sam-
pled and connected, the more time needs to be spent on 
the graph search, and also the more likely two configura-
tions can be successfully connected. In addition, since the 
planner is probabilistic in nature, there could exist cases 
where the planner fails to find a feasible path that actually 
exists. However, for the user interface application we 
consider in this paper, we use the planner only as naviga-
tion assistance. Occasional failures do not cause fatal ef-
fects on the user interface. In fact, most of the planning 
problem instances encountered in this application are not 
very difficult. We would usually prefer an early failure 
instead of a long-waiting success since it might cause 
undesirable congestion in navigation control. 

 
4. Intelligent 3D User Interface 

 
4.1. Traditional user control loop 

 
In an interactive 3D graphics program, such as a 

VRML browser, a user specifies his/her navigation com-
mands through a 2D mouse. A typical program flow for a 
VRML browser consists of two threads: input and anima-
tion. The user-input thread is event-driven while the ani-
mation thread is busy-looping. A typical operation would 
require the user to drag a vector in the browser to repre-
sent the viewpoint velocity vector v. This velocity vector 
in the canvas space will be decomposed into a horizontal 
and a vertical component. The horizontal component, vx, 
often refers to the rotational velocity while the vertical 
component, vy, often means the linear velocity along the 
forward or backward directions. The input thread updates 
this motion vector whenever the mouse is dragged.  

On the other hand, the animation thread loops indefi-
nitely to perform configuration updates based on this ve-
locity vector and then render the scene according to the 
updated viewpoint. In order to perform real-time naviga-
tion such that the distance traveled will not depend on the 
speed of the computer, the browser will multiply vx and vy 

by the time interval δ t between two frame updates to ob-
tain the displacement transformation T. T will then be 
multiplied by the current configuration qi to obtain the 
next viewpoint configuration qg (qg = T x qi). Browsers 
usually perform collision checks along the translation 
vector (denoted by d) between qi and qg. If a potential 
collision might result from the movement, the viewpoint 
update will not be performed. This is the situation when 
the user might get stuck at a certain location. It is very 
often that the user has to move backward first in order to 
escape the trapping situation.  

 
4.2. Predicting user intention 

 

In our system we propose to modify the animation loop 
such that the system will not give up movements in the 
situations where potential collisions might happen. In-
stead, the system will try to find a collision-free path for 
the viewpoint to follow whenever collisions are detected. 
We achieve this by maintaining a queue of collision-free 
configurations in the animation loop. Whenever the queue 
becomes empty, the system will try to fill the queue by 
generating a collision-free path according to the current 
velocity vector.  

Now the problem becomes how the system predicts the 
intention of the user implied by the vector v. In other 
words, how does the system specify qg for defining an 
appropriate path-planning problem? There are three main 
cases to account for according to the legality of qg and 
how it can be adjusted. These cases, as depicted in Figure 
2, are described as follows. 

A. No modification: the projected qg is legal, such as 
the A1 and A2 cases. 

B. Direct modification: the projected qg is illegal but it 
can be modified along d to become collision-free, 
such as the B1 and B2 cases. In our current system, 
qg will be set to the first free configuration across the 
obstacle whenever possible (the B2 case). If not 
possible, it will be set to the farthest free configura-
tion along d (the B1 case). 

C. Indirect modification: the projected qg is illegal but 
there exist no legal configurations along d (the C 
case). In this case, qi already touches obstacle 
boundary, and there are no legal qg along the current 
forward direction. Therefore, qg must be moved out 
of d. In our current system, we place qg on the tan-
gential component of d along the obstacle boundary.  

By predicting the intention of the user, the system tries 
to move qg to a nearby free configuration according to d. 
With these possible modifications, the path-planning 
problem for the user interface can then be clearly defined.  

 
4.3. Computing smooth maneuver paths 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Possible goal configurations and their 
modifications 
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After an appropriate goal for path planning is specified, 
three types of results may be produced: 

I. Trivial path: there exist no obstacles between qi 
and qg, and therefore, a trivial straight-line path 
would be sufficient. For instance, cases A1, B1’, 
and C’, as shown in Figure 2, all result in 
straight-line paths. 

II. Non-trivial path: there is no straight-line path 
between qi and qg, and therefore, the path planner 
described in the previous section needs to be called 
to compute a feasible path. If a path is found, it 
will be smoothed and appropriately parameterized 
before putting to the configuration queue in the 
animation loop for execution. 

III. No path: although both qi and qg are collision-free, 
the path planner fails to find a collision-free path 
connecting them. The configuration queue in the 
animation loop will remain empty, and no actions 
will be taken. 

A user is allowed to intercept the execution of the path 
at any time by giving the system a cue such as releasing 
the mouse buttons or making a sharp turn. These cues are 
designed to be consistent with conventions used in normal 
navigation operations. In the current system, when a path 
τ is generated, we also record the dragged vector vτ asso-
ciated with τ. If the current vector v deviates from vτ for a 
certain threshold, the configuration queue in the anima-
tion loop will be flushed to empty, and the path is recom-
puted. Releasing the mouse buttons is treated as special 
case where v becomes null. 

  
5. Implementation 

 
5.1. Connecting to a VRML browser  

 
In order to make the research result more portable in 

the future, we choose to modify the open source VRML 
browser implemented based on the Java3D SDK library. 
This SDK and the VRML browser are all available for 
FTP on the public domain[25]. In this library, we have 
mainly modified the routine for processing mouse events 
and the routine for updating the next viewpoint configura-
tion. At the time of our implementation, this VRML 
browser does not support collision detection yet. There-
fore, we have enhanced the browser with our implementa-
tion of collision detection routines. They are called in the 
viewpoint update routine to prevent potential collisions 
even when the path planner is not used. 

 
5.2. The randomized roadmap planner 

 
The roadmap planner has been implemented in the 

Java language. Two files are read by the system. The 
VRML browser reads in the VRML model of architec-

tural environment, while the path planner reads in the 
corresponding 2D data file describing obstacle configura-
tions. A separated maze editor has also been implemented 
to create and maintain both files consistently.  

When the system starts up, we precompute the C-space 
obstacles with a well-known linear-time algorithm[15]. 
We store this information in a 3D bitmap of 128x128x128 
for future collision detection lookups. In the learning 
phase of the roadmap planner, we perform a uniform 
sampling in the C-space. We uniformly divide the space 
into 8x8x8=512 regions and randomly sample up to four 
free configurations in each region. The system gives up 
sampling on a region after 20 trials. After the sampling 
step, the system will try to connect all pairs of nodes in 
the same or neighboring regions with collision-free 
straight-line paths. Therefore, there are up to 1024 inter-
connected nodes in the roadmap after the learning phase. 

In the query phase, we first connect qi and qg to some 
nodes qi’ and qg’ in the roadmap graph, respectively. Close 
nodes are tried first. After these starting and ending nodes 
in the graph are found, we use a modified A* algorithm to 
search for a path connecting these two nodes. If a feasible 
path in the graph is found, the straight-line segments 
along the graph path will then be concatenated to form the 
final geometric path. A smoothing routine will then be 
called to reduce the path length and increase its quality.  

 

 

Figure 3. Top view of the maze environment 

 
Figure 4. A snapshot of the VRML browser 



6. Experiments 
 
Ten people were invited to test the implemented sys-

tem. Eight of them are undergraduate students. Six of 
them major in Computer Science but only two use VRML 
browsers frequently. The other two testers do not use 
computers regularly. They are given a short instruction 
about how to use the browser and three minutes to warm 
up before the experiments start. In order to compare the 
effects of incorporating planning into the system, an ex-
periment consists of two runs (with and without planning) 
of the same task sequence. In order to avoid unnecessary 
biases created by practice time, the run with planning is 
always done first. 

 
6.1. Experimental settings 

 
The experiments were carried out on a regular PC with 

a Celeron 300A processor. The experimental scenario 
consists of six checkpoints in a maze-like environment for 
a user to visit sequentially. A top view of this environ-
ment is shown in Figure 3. A user navigates in the maze 
with a first-person view and the WALK mode provided by 
the VRML browser. A bouncing ball is used to help a user 
identify the targeting checkpoint. An example of the ren-
dered 3D scene is shown in Figure 4. In order to assist a 
user in finding the next checkpoint, we also provide a 
2D-layout map, as shown in Figure 5, at the side of the 
VRML browser window. In each experiment, a user has 
to move the viewpoint from checkpoint A through 
checkpoint F as quickly as possible.  

 
6.2. Experimental results 

 
The experimental results consist of two parts: objective 

statistic data and subjective user comments. The com-
parisons of the system with and without planning are 
summarized in Table 1. The numbers are based on the 
average of the ten testers. The overall times taken to com-
plete the requested task are 243 and 421 seconds, respec-

tively, for the system run with and without planning. The 
performance speedup for the interface with planning is 
about 73%. In term of movement steps, about one third of 
the steps are saved after the planner is used. The cost to 
pay is that the system has to spend about 2.5 seconds in 
total to preprocess a given environment and about an av-
erage of additional 11.5 ms in each step to determine the 
next viewpoint configuration. (It still takes some time for 
the interface without planning to detect collisions.) The 
overall extra time spent on planning only consists of 
6.21% of the overall execution time.  

The subjective user feedback for the user interface 
with planning is positive in general. Some of the users 
may find the viewpoint hard to control in the beginning 
(especially for those who like to play games with key-
boards) but all of them can get used to the control very 
soon. Once they are in a good command of the interface, 
navigation efficiency is greatly improved. In summary, 
they all regard the path-planning capability as a very con-
siderate and desirable feature for a 3D VRML browser. 

 
6.3. Analysis 

 
In order to understand how path planning is used in our 

 
Figure 5. A 2D-layout map of the maze 

Table 2. Statistic data of ten users using the 
intelligent interface 

 n1 n2 n3 n4 n5 t1 t2 t3 
u1 746 1644 888 30 19 2.01 129.4 281.5 
u2 790 1592 773 36 17 1.44 124.9 287.5 
u3 908 1653 736 65 50 3.05 209.2 471.4 
u4 1476 2592 1117 87 63 3.15 220.5 427.7 
u5 2737 3106 361 36 13 0.98 239.9 332.1 
u6 2451 3070 640 36 14 1.30 261.4 335.5 
u7 2091 2430 295 72 84 3.39 249.4 332.1 
u8 1430 2419 972 59 39 2.66 238.1 585.2 
u9 1861 2988 1024 104 93 4.25 370.9 514.8 
u10 2942 3486 523 50 23 1.61 384.9 607.4 
avg. 1743 2498 733 58 42 2.38 242.9 420.7 

n1: no of generated paths  n2: no of generated steps 
n3: no of planner generated steps n4: no of planning called 
n5: no of paths being cancelled during their executions 
t1: total path-planning time (sec) 
t2: total execution time with planning (sec) 
t3: total execution time without planning (sec) 

 

Table 1: comparison of navigation efficiency 
with or without path planning 

 w/ planning w/o planning 
total execution time(sec) 243  421  
no of navigation steps 2498  3941  
preprocessing time (sec) 2.5  0  
avg. time for computing 
the next step (ms) 18.9 7.4 
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walkthrough experiments, we take a closer look at the 
statistic data collected from the ten experiments, as listed 
in Table 2. The number n1 in the second column is the 
number of paths (including type I and type II paths in 
subsection 4.3) and n2 is the number of steps generated 
for execution during an experiment. Although the number 
of calls to the path planner (n4) is not very high, total 
number of steps (n3) in these nontrivial paths constitutes a 
great portion (about one third) of n2. Typical paths gener-
ated by the planner, depicted as sequences of dots, are 
shown in Figure 6. The numbers beside the paths are their 
lengths. During the navigation, some paths (trivial or 
nontrivial) (n5) were cancelled due to significant deviation 
from the original user intention. The total time spent on 
path searching in the roadmap planner (t1) is only a small 
portion of the overall execution time (t2). Compared to the 
execution time for the interface without planning (t3), the 
intelligent user interface with planning indeed results in 
consistent and significant improvements. 

 
7. Conclusions and Future Work 

 
In this paper, we have proposed a novel approach to 

designing an intelligent user interface for architectural 
walkthrough applications. A path planner with a random-
ized roadmap approach is used to assist a user in navigat-
ing through difficult areas where a user often get stuck 
with traditional user interfaces. This planner has been 
successfully integrated with the low-level control loop in 
a VRML browser. Our preliminary experimental results 
show that, with the help of the planner, the overall navi-
gation time can be consistently and significantly saved. 
We believe that this intelligent user interface is effective 
because it delegate some of the geometric reasoning tasks 
to the computer while retaining the advantages of direct 
manipulation.  

There exist limitations on our current implementation. 
For example, we currently assume a static and bounded 
workspace in our path planner to facilitate roadmap con-
struction. However, it is more desirable (for path planning 
in general) to be able to consider dynamic and unbounded 
workspace possibly with incremental roadmap construc-
tion. The effect of path planning on the walkthrough type 
of 3D-interface design deserves further studies. For ex-
ample, more experiments need to be carried out for dif-
ferent tasks, on different virtual scenes, and on different 
systems of various computing powers. We think that the 
effects will even more significant for complex scenes on 
slower machines. 
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