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Abstract. With the rising popularity of engaging storytelling experiences in gam-
ing arises the challenge of designing logic control mechanisms that can adapt to
increasingly interactive, immersive, and dynamic 3D gaming environments. Cur-
rently, branching story structures are a popular choice for game narratives, but can
be rigid, and authoring mistakes may result in dead ends at runtime. This calls
for automated tools and algorithms for logic control over flexible story graph
structures that can check and maintain authoring logic at a reduced cost while
managing user interactions at runtime.
In this work we introduce a graph traversal method for logic control over branch-
ing story structures which allow embedded plot lines. The mechanisms are de-
signed to assist the author in specifying global authorial goals, evaluating the
sequence of events, and automatically managing story logic during runtime. Fur-
thermore, we show how our method can be easily linked to 3D interactive game
environments through a simple example involving a detective story with a flash-
back.

Keywords: Interactive storytelling, Game narrative, Logic control, Story graph filter-
ing

1 Introduction

As readers of stories, our brains are engaged in a mix of perceptual, cognitive, and log-
ical activities in an attempt to comprehend the unfolding of events and immerse us in
the story world. According to Branigan, comprehension of the plot can be interpreted
in terms of two processes: the bottom-up perception of individual actions and events as
they occur, and the top-down structural understanding of story goals, temporal order,
and logical inferences [2]. In interactive digital storytelling, where the viewer can par-
ticipate and alter the outcome of the story, the replay value of the story increases and
the viewers are more immersed through participation in the story outcome.

Yet with the growing complexity of the story and managing outcomes of interaction,
the task of authoring with regards to story logic and content becomes a big challenge for
the story designer. Computational algorithms and the mature understanding of narrative
structures provides story designers with better tools to create more personalized, en-
gaging, and well-controlled narrative content. One structure is the branching structure,
popularly adopted by existng games as game trees or story graph structures in existing
research [15][9][12]. Yet maintaining logic over complex branching (and maybe even
non-linear) stories at runtime is also a difficult task that requires laborious authoring
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to ensure that no illogicalities exist in the story graph. Also, user interactions may be
greatly restricted or have low impact over the story due to the rigid structure of such
graphs. Therefore, it is much desired to have a set of simple set of logic controls that
integrates the story logic, user decisions, temporal arrangements, and authorial goals in
one mechanism.

In this work, we propose a logic control algorithm specifically suited to maintain
the logic control of the story graph structure. Our algorithm is suited to story graph
structures that are interactive, require stronger control of logic, and possibly involve
non-chronological story segments. The method takes as input a pre-authored (or gener-
ated) story graph and a set of user-defined authorial goals (e.g. ”a murder and a happy
ending”). Our method then outputs a subgraph of the original story graph, and at each
interactive plotpoint, subsequently prunes the story graph to maintain logicality at run-
time. Moreover, when the temporality of the story is non-linear, involving embedded
scenarios, the algorithm ensures user interactions within and outside of the embedded
scenario extend to other parts of the story, ensuring that no matter in what sequence
the story events play out, the logic remains consistent. The algorithm is linked to an
authoring interface and scene in Unity to demonstrate the effect of logic control on the
discourse in a real-time 3D environment.

The main contributions of this work is the design of a logic control mechanism for
narratives with embedded plot lines that (1) enforces local story logic (such as pre-
conditions, and post-effects of story events) and authorial goals to be upheld without
running into unresolvable plot points, (2) manages story logic over user interactions of
non-linear stories at runtime, and (3) performs dynamically in 3D environments.

In the following sections, we first outline the related work. We then briefly describe
the specifications of the story graph representation before focusing on the logic control
algorithm over the story graph. In Section 6 we present the output of our method in a
real-time 3D environment with authorial goals, temporal variations, and user interac-
tions. We finally conclude with possible applications of our method.

2 Related Work

For more flexible narrative generative systems, Brooks [3] proposes a framework with
structural, representational, and presentational environments. He also proposes that a
computational narrative is comprised of a narrative structure, pieces of the story with
representation information, and a reasoning strategy among the story pieces. Similar to
Brooks’ framework, we realize our story structure and logic control with (i) the story
graph structure with story units, (ii) the logic control algorithm, and (iii) the presentation
in 3D environment. This section outlines the previous work on story structures and
logic control mechanisms for 3D game and storytelling environments we observe in the
design of our methods.

2.1 Story Structure and Units

To find a suitable story structure that provides enough flexibility for high-level plot
arrangements, we survey previous approaches to branching and planning formalisms of
interactive narrative.
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Carmichael and Mould [4]adapts the story model of Chatman [5], using the concept
of kernels and satellites to represent core events (kernels) and anticipated storylines
(satellites) in open-world exploration games. This structure fits its original purpose to
loosely-structured open-world exploration narratives by ensuring key events are played
in order, but is too simplistic and general to construct multiple plotlines through varia-
tions of key events as story graphs could.

Our work is similar to the concept of plot-point graphs [15], and further explored
by [9] where a number of important moments (i.e. plot points) are authored, and eval-
uation function is adopted to verify the sequencing of the plot points. However, this
search-based approach is targeted towards story sequences that are linearly authored,
requiring a full search algorithm over all permutations of plot points to construct an
interactive story graph. Our work is targeted towards story graphs that were authored to
be interactive.

Previous work on narrative formalisms come in the form of either planning or
branching, leaning towards planning methods in generative systems. Though they are
more restrictive in generative power than planning, branching structures are shown to
be efficient when managing user decisions [13]. While planning algorithms provide the
capacity for dynamicity in storytelling, their benefits are often insufficiently explored
due to the limitations on the scalability of existing stories.

2.2 Logic Control in Interactive Storytelling

From the story point of view, logic control concerns the causal relations between events,
as a key is to the lock it opens and a pen to the words it writes. When dealing with logic
in stories, we are evaluating the causality of the author’s creation in order to maintain
believability in the audience. [12] Constructs graph-like structures for multiplayer sto-
rytelling, and introduces a logical control mechanism that can adapt to user interactions
dynamically. [6] introduces interactive behaviour trees as a more author-friendly and
flexible option. However, these approaches could still result in dead ends when users
take certain choices unexpectedly. Also, they were not designed to accommodate em-
bedded and temporally rearranged narratives, which is one of our strengths.

For some stories, telling the story chronologically may seem like a natural decision,
whereas for others, such as detective stories, readers may enjoy deciphering what hap-
pened. Currently, there are a number of papers situated to discuss temporality in game
narratives. We observe in text-based generative narratives, Montfort [8] focuses on syn-
tactical issues, such as grammatical tense, using a tree representation of time. Lönneker
[7] introduces an architecture for tense in “levels” of narrative, which is a basis for de-
signing embedded story structures. Concerning logicality of temporal rearrangements,
[10] and [14] tackle problems of timing in character or agent-based planning. Similarly,
Bae and Young[1] use planning methods to create temporal rearrangements, mainly
to invoke surprise arousal in viewers by hiding certain information and revealing it at
emotionally intense moments.

However, the aim of these methods is to generate an arrangement of events that are
consistent in their presentation (discourse) into a linear story, and not to ensure logic
consistency of story content when user choices can have a strong impact on the plot. In
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Fig. 1. In the system, the author can design story and animation content, and set authorial goals.
The logic control uses a double traversal algorithm that checks and filters story nodes and edges
so that no dead ends would result from user decisions.

contrast, our method maintains logic through an algorithm that enforces pre- and post-
conditions while maintaining interactivity by producing a subgraph of all feasible paths
(and not just one arrangement).

3 Overview

For the implementation of story logic control, we design a workflow for game narratives
comprised of three components: (1) authoring, (2) logic control over temporality and
user interactions, and (3) 3D presentation. The relation between the components of the
framework and the presentation platform are shown in Figure 1.

The authoring component involves authoring of the basic event of the story, and
linking them up into a story graph. The logic control then takes over to ensure pre-
and post- conditions on each event is upheld, and removes any illogicalities in the story
graph. Finally, the method is linked to a 3D presentation and allows users to experience
and interact with the story in real time. The next section begins to outline our method
by explaining the story representation: the basic story units, the story graph, and how
the story graph represents complex structures such as embedded plotlines.

4 Story Representation

Here we introduce the authoring of the graph-based story representation for the purpose
of demonstrating the logic control. Note that, in this section though we coin the term
“authoring” to describe the process of building the story graph, the story graph does
not necessarily have to be manually authored. We envision the capability of planning or
search algorithms that could generate such a story graph. The story graph is therefore
intended to be seen as a formalisation or a generalisation of graph-based representations
of branching narratives that are widely used in current games.

4.1 The Building Blocks of Story

Interactive narratives for games are often comprised of basic units of action, dialogue,
and visuals or audio effects. In this paper, we refer to these units as plotpoints.
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To help the logic control identify the plotpoints, postconditions can be attached to
the plotpoint, and serve as markers that the logic control can evaluate. Postconditions
have either boolean values (e.g. the plotpoint concerns “Sara”, “murder”, and “man-
sion”) or integer values (e.g. the plotpoint has the effects of “happy+=1”). Using the
above postconditions as an example, if the story goes through a plotpoint that has the
postconditions “murder;happy+=1” then the global parameter “murder” is assigned the
value of “true” while the value of the global parameter “happy” is incremented by 1.

The plotpoints do not need to be authored in any specific order, and any postcondi-
tions can be attached to the plotpoints, which act like postconditions that can be eval-
uated later on in the story. We do not restrict the size, content, or scope of a plotpoint.
A story, or even multiple varying stories can be composed out of the plotpoints sim-
ply by linking them in a specified order. The linking and maintaining of logic between
plotpoints is described below.

4.2 Establishing Local Story Logic

On their own, each story plotpoint simply represents a unit within the story. When a
number of plotpoints related to a same scene are grouped together, we call the grouped
plotpoints a “move” adopting the terminology from [11] to describe a complete se-
quence.

But a number of questions remain: How is each plotpoint within a move related
to other plotpoints? Arrangements of the plotpoints within the move are achieved by
linking plotpoints to each other with directed edges that specify a total order between
plotpoints. Plotpoints can exist in moves without any edges, but then signifies that the
plotpoint has no logical relation with any other plotpoint in the move. Every move
has an empty entering and exiting plotpoint (Figure 2). The first plotpoint in the move
is the entering plotpoint, which directs to all the plotpoints that can serve as the first
action in the move. All plotpoints that are the last plotpoint in the move point to an
exiting plotpoint, which is either a concluding point in the story (thus a “The End” of
the story), or the entrance point of another move.

The story representation can also allow embedding, which refers to the process of
jumping back and forth to an external move B from a plot point in move A: Optionally,
a plotpoint within move A can also embed to another move C. Upon finishing the plot-
point, the story plays the embedded move B (suspending the current point in move A)
and when move B is finished, the story returns to the embedding plotpoint in move A.

Apart from the order of the events, edges are also a way to control logic. precondi-
tions can be placed on the edges, such as the boolean precondition “murder = false”
(meaning that a plotpoint with the postcondition tag “murder” must not precede this
plotpoint) or “happy ≥ 2” (meaning that the integer postcondition “happy” must have
a value of 2 or more at this point). These preconditions can be grouped with boolean
operators (AND, OR, and NOT) to form evolved preconditions to control the story. As
edges can be placed between any two plotpoints that can logically follow each other,
we can envision many circumstances when one node can have two or more exiting
edges pointing to different story nodes respectively. Note that preconditions are placed
on edges linking plotpoints, and not on plotpoints themselves, keeping the plotpoint as
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minimal as possible so that it may be reused in multiple stories flexibly. This is an im-
portant property in the story graph, where the plot line actually branches: the separation
of the plot leading from a plotpoint is where user intervention can change the outcome
of the story (by leading to different end nodes within the story graph).

5 Logic Control

Once the story graph has been either manually designed or generated by algorithms, we
then demonstrate our method to perform logic control on this representation. Story logic
comes into light as the author wants to achieve storytelling goals while managing user
interaction in possibly non-chronological story lines. Like matching keys to their locks,
the process of establishing story logic requires a series of pre- and postconditions; the
more elaborate the plot design, the more complicated this web of preconditions, and the
higher likelihood of dead ends, unresolvable user interactions, or unachievable story
goals.

In this section, we introduce our logic control method over the generic story graph.
The method is designed to assist the author in specifying global authorial goals, evaluate
the sequence of events, and automatically manage story logic during runtime.

5.1 Authorial Goals

Fig. 2. Given an authored move and authorial goal ¬ E ∧ M (“(NOT Evil) AND Magic’)’, the
algorithm (1) removes plotpoints contradicting the goal (E), (2) pastes the goal (M) as an end
precondition, (3) reverses and (4) propagates the preconditions on all edges, and (5) removes
dead ends. As a result, remaining paths ensure the story logic as well as authorial goals.
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Authorial goals are defined as the storytelling goals that the author wants to achieve.
The design of authorial goals corresponds with Chatman’s theory of modes of plot,
where certain combinations of postconditions will result in specific emotions in the au-
dience. For example, Chatman defines that a good hero that fails will arouse sympathy,
while an evil hero that succeeds invokes a feeling of disgust. Such statements can be
easily expressed as preconditions on the story graph as an evaluation of the postcondi-
tions of the plotpoints that occur in the story. Taking tan example, “AND( HeroFail =
true; HeroKindness ≥ 2 )” and “AND( HeroFail = false; HeroKindness ≤
−2 )” respectively, where in the story graph, there are ending nodes with boolean post-
conditions of HeroFail and nodes that accumulate or decrement the value of the in-
teger parameter HeroKindness. Authorial goals are to be placed on the whole story
graph and seen as preconditions that must be fulfilled before the end of the story. If we
have an authorial goal of “Magic = true” it would mean that somewhere in the story,
there must exist a plotpoint tagged with the postcondition Magic.

We aim to ensure (1) that the local logic in the previous section did not resolve in
any dead ends or unresolvable plot lines, and (2) that the authorial goals are ensured to
be achieved (if a solution exists). We design the logic control algorithm for the purpose
of upholding both the local logic and authorial goals (see Algorithm 1). The algorithm
uses a double depth-first traversal to prune the story graph and output a subset of val-
idated paths with reinforced preconditions on the edges to ensure that authorial goals
are met. There are four stages in the algorithm to carry out authorial control: removal of
contradicting plotpoints, paste end preconditions, reversal and propagation of precon-
ditions, and the final validation and dead end removal.

Algorithm 1 LogicControl (node N , goals G)
1: if G violates descriptors of node N then
2: remove node N , and node’s incoming and outgoing edges
3: end if
4: for all sons s of node N do
5: if s has not been visited then
6: tag s as visited
7: LogicControl(s, G)
8: end if
9: end for

10: if all outgoing edges of N have preconditions then
11: for all outgoing edges e in node N do
12: cond← cond ∨ preconditions in edge e
13: end for
14: for all descriptors d of node N do
15: cond = negateDescription (d, cond)
16: end for
17: for all incoming edges e of node N do
18: add preconditions cond to edge e
19: end for
20: end if
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Removal of contradictory plotpoints From the story representation, plotpoints can
contain a number of boolean or integer postconditions. The removal of contradictory
plotpoints excludes plotpoints containing undesirable boolean postconditions. The al-
gorithm takes as input the boolean authorial goals, performs a DFS traversal on the
story graph to remove any plotpoints with postconditions that contradict with the goal,
where an authorial goal requires a boolean postcondition to be false. For example, for
the authorial goal “AND( HeroFail = false; HeroKindness ≤ −2 )” all plotpoints
with the postcondition HeroFail are automatically removed, since by definition, they
automatically contradict the goal.

This ensures that no plotline will go through undesirable plotpoints. Boolean goals
that are evaluated as true (i.e. “SomeChar = true”) as well as integer goals are not
evaluated for this step.

Pasting end preconditions The algorithm then pastes the authorial goals as end pre-
conditions on all the incoming edges of the end nodes. The reason for doing this is to
ensure that, before the story concludes, these goals will be upheld. However, this step
would result in possible unresolvable plot lines if not all of the goals are fulfilled before
the story comes up to this point. The next step, the reversal and propagation addresses
this problem.

Reversal and propagation of preconditions As mentioned previously, pasting goals
alone cannot ensure that a story will conclude. It is possible to choose a path in the
story graph that reach an end node, but cannot find any possible path that achieves
the goal, thus causing the story to fail at runtime. To prevent this, our algorithm does a
second traversal through the story graph bottom-up. For every plotpoint, it concatenates
the preconditions from the outgoing edges, and pastes them to the incoming edges.
We refer to this step as the propagation. However, this task is not just a copy-paste of
preconditions from one edge to another.

Before preconditions are propagated, they are first reversed; the plotpoint checks its
own postconditions against the preconditions. If a boolean precondition is fulfilled (for
example, a plotpoint with the postcondition HeroFail is propagating the precondi-
tion “HeroFail = true”) it will see the precondition as fulfilled, and will remove
it. Integer preconditions such as “HeroKindness ≤ −2” are reversed by revers-
ing the calculation done by the plotpoint (for example, the propagated precondition
“HeroKindness ≤ −2” will be translated as a “− = 1” precondition when encounter-
ing the integer postcondition “HeroKindness ≤ −1”). This allows the integer value
to increase and decrease freely throughout the story, thus creating highs and lows in
the plotline. Finally, repeated boolean preconditions and redundant integer precondi-
tions can be eliminated. Though not required, this step ensures that the preconditions
are concise and do not expand much throughout the propagation.

Validation and removal of dead ends Since preconditions are propagated up to the
top of the story graph, it is fast to identify which edges have preconditions that cannot
be fulfilled. The remaining step traverses the graph once more removing any dead ends
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(i.e. a plotpoint with no feasible outgoing edges), then outputting the sub-graph with all
the feasible plot lines.

Figure 2 illustrates this process.

5.2 Embedding

Our method can also control logic in embedded moves that represent temporal rear-
rangements, such as flashbacks. As described previously, an embedded move is an in-
ternal representation within the plotpoint allowing it to embed another existing move
like a sub-plot.

Given a start point in the story, the story progresses sequentially and chronologi-
cally down a feasible story path. When deciding whether an embedding should occur,
the algorithm checks whether the embedded move has been played before. If it hasn’t,
embedding occurs; otherwise, the story just continues to the next plotpoints. The algo-
rithm automatically determines what sequence to show events, whether an embedding
should take place, records the progression of the story, and returns the story to the orig-
inal point after the embedding occurs.

However, when embedding user interaction happen simultaneously, we need to en-
sure that user decisions extend to the embedded move at runtime. And vice versa, we
need to ensure that decisions made within the embedded move extend to the the rest of
the story. For example, if at the story entry point, an event such as the murder of Actor
C is assumed to have occurred, then in a flashback of the crime taking place, only story
lines that lead up to the murder of Actor C should be feasible.

5.3 Managing of User Interactions for Embedded Storylines

The algorithm we have described above not only enforces the achievement of authorial
goals over a story graph, but also reinforces local logic on the edges by propagating
them until they are fulfilled. By definition of this logic control algorithm, it is guaranteed
that all paths that the user may choose in the graph must have at least one feasible path
(chronologically) that (1) can terminate the story, (2) achieves all the authorial goals,
and (3) does not contain any illogicalities.

We designed a second algorithm for user interaction, Algorithm 2, to solve the
problem of logic control for user decisions with embedding. It extends the previous
algorithm by propagating, for each decision the user takes, the preconditions on the
outgoing edges of the plotpoint throughout the story graph, as if they were new end
preconditions. In this way, the plotpoint is ensured to be reachable and to be reached for
all the remaining paths. The graph is then re-shaped for each decision. This algorithm
also maintains a set of flags to record the current level of embedding, and the embedding
point, ensuring that the story returns to the correct plotpoint after finishing embedding.

Our mechanism for logic control in the stories is consistent with Branigan’s mode
of comprehension of narrative [2]. Each story plotpoint is understood as a bottom-up
independent unit of action with certain postconditions in relation to its content, and
the story graph is a top-down logic control unit, with a filtering algorithm that (i) pre-
serves preconditions between narrative plotpoints, and (ii) assists the author in meeting
authorial goals in the form of end preconditions.
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Algorithm 2 UserInteraction (Decision D)
1: if current node N has embedding then
2: embedLevel += 1
3: push node N into levels stack L
4: next node N ′ = embedding entrance point Ne

5: embedF lag = true
6: end if
7: if embedF lag is false and embedLevel > 0 then
8: current node N = pop L
9: end if

10: get next adjacent node N ′ from current node N and decision D
11: for all incoming edges e of node N ′ do
12: cond← cond ∨ preconditions in edge e
13: end for
14: LogicControl(story entrance point s,cond)
15: return next node N ′

6 Results

6.1 Demonstration

We integrated our logic control method and authoring interface into an interactive sto-
rytelling environment built on Unity called the “Theater”. The Theater takes as input a
pre-authored story graph as well as predesigned animation content for each plotpoint.
It actively communicates with the logic control, presents the animation content for the
plotpoints in the order designated by the logic control, requests suitable user choices
and presenting them to users, and returns choices made by users.

We demonstrate the logic control on an example scenario involving a dissatisfied
woman, her millionaire husband, her secret lover, and a local investigator. The woman is
unhappy with her current life and wants to run away with her lover. She makes decisions
on whether to confront her husband, which results in some conflicts, and the husband is
killed. An investigator arrives and questions the woman. Based on the previous decision,
the woman will have options to lie, to confess, to escape, or to protect her lover, each
leading to different consequences.

The story has two possible initiating points: one from the chronological start, when
the women decides to take action; and one is when the millionaire is already dead
and the investigator arrives. The second initiating point will invoke a flashback on the
woman when she recalls what had happened prior to the investigator’s arrival. In both
cases, the user is offered the same amount of decision, and the logic control ensures that
all stories generated are plausible. The two plausible plot lines are shown in Figure 3.

The accompanying video shows the flashback version of this story, demonstrating
how the logic control achieves story goals while ensuring all preconditions are met over
user decisions and the non-linear storyline at runtime.

Link to video: https://vimeo.com/129289640
An addressing of all three aspects–temporality, interactivity, and authorial goals–for

complex storyliens has not been displayed before in existing contributions.
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Fig. 3. The example story with two plot lines that involve non-chronological events.

6.2 Evaluation

Though an authoring interface is currently under development to evaluate the authoring
potential of the story graph, we conducted a qualitative pilot study on 5 users to gain
feedback on the logic control of the algorithm.

All five users were university students from different backgrounds. Each were asked
to experience the story in four modes: (1) text, (2) non-interactive animated, (3) interac-
tive animated, and (4) interactive animated with story goal (they were given the choice
to select a story goal of “happy” or “sad”).

In the post survey, users mentioned that while Mode 3 was more enjoyable, but
Mode 4 had a higher capacity for creativity as an author. The selection of story goals
offered them control over how they, as an author, would like the story to unfold. When
asked what they would like to use the system for, all five users noted the control they
had on the story in Mode 4, and its potential for creativity as an author. One user partic-
ularly noted from the perspective of narrative creation, he would be interested in using
the system of Mode 4 by adding his own fragment to create a new storyline with a rein-
forced goal. Another user stated that Mode 4 would be helpful in creative writing with
its branching narrative as compared to traditional linear narratives.

7 Discussion and Conclusion

One main drawback of our approach is, being a graph-based traversal, it cannot rank or
evaluate the quality of a story line as planning algorithms do with well-designed heuris-
tics. Every feasible path in the story graph is considered equally probable. Therefore,
the algorithm cannot solve a problem such as searching for a best match. This maintains
the simplicity of the algorithm, but limits its tolerance to what it would consider a good
plot line. In this paper, we have proposed a method for logic control of interactive nar-
ratives with regards to authorial goals, user interaction, and temporal rearrangements.
The algorithm we designed performs a traversal on the story graph, thereby re-shaping
interactive story graphs to fulfil authorial goals and maintain story logic. We demon-
strated the output of the logic control in a 3D virtual environment.

As an extension of evaluating story postconditions and understanding of story struc-
ture and content, we believe our approach can be further developed to enhance real-time
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context-aware storytelling techniques. The logic control could provide story level infor-
mation such as emotion, timing, perspective, and genre to the discourse level such that
the virtual camera can make decisions on viewpoint and compute suitable sequences
of shots. The mechanism for story filtering and authorial goal design also provides an
exciting move towards even more tailored and personalised storytelling experiences for
interactive digital storytelling.
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