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Enabling a digital actor to move autonomously in a
virtual environment is a challenging problem that has
attracted much attention in recent years. The systems
proposed in several researches have been able to plan
the walking motions of a humanoid on an uneven ter-
rain. In this paper, we aim to design a planning sys-
tem that can generate various types of motions for a
humanoid with a unified planning approach. Based on
our previous work, we add two additional motion abil-
ities: leaping and moving obstacles into the system. In
previous work, the order of moving obstacles is deter-
mined first, and then the corresponding paths for the
pushing/pulling motions are generated. In this work,
we take a unified approach that accounts for all types
of motions at the same time. We have implemented a
planning system with this unified approach for a hu-
manoid moving in a layered virtual environment. Sev-
eral simulation examples are demonstrated in this pa-
per to illustrate the effectiveness of the system.

Keywords: unified planning, motion planning, au-
tonomous digital actor, leaping and pushing motions

1. Introduction

In a 3D virtual environment, allowing human-like dig-
ital actors to plan their motions automatically is a chal-
lenge similar to the motion-planning problem for au-
tonomous robots. Direct manipulation is commonly used
to walkthrough a virtual environment with control devices
such as keyboard and mouse. However, we are more inter-
ested in designing a system with a higher level of control
that can generate appropriate motions along a collision-
free path for the actor to reach the goal. In recent years,
Kuffner [1] , Shiller [2], and Li [3] have proposed various
methods to generate humanoid motions in complex envi-
ronments. In this paper, we extend our previous work [3]
to design a unified approach to incorporate more motion
abilities for digital actors in a layered virtual environment.

The motion abilities of a digital actor can be roughly
classified into movement and manipulation. All types of
locomotion that allow a digital actor to move its body be-
long to the type of movement while grasping and pushing

objects belong to the type of manipulation. In this work,
we hope that a digital actor can generate motions to reach
its goal by moving some obstacles. In previous work, this
problem has been shown to be a complex motion planning
problem [4]. In [5], the authors used a graph structure to
represent the state space of the environment for determin-
ing the moving order of the obstacles and then the path for
realizing the corresponding moving and passing motions.
Several complex examples have been created to illustrate
the need of manipulating movable obstacles for reaching
a goal that was not reachable originally.

In most previous work, the ability of moving obstacles
is usually treated as a special planning case triggered only
when no feasible paths exist without moving the obsta-
cles. However, in our daily experience, we may choose to
move an obstacle (such as a chair) if the alternative path
to the goal is a long detour. In other words, instead of
pre-determining the order of these possibilities, we take
all possible solutions into account at the same time ac-
cording to their costs such as energy consumption or path
length. For example, we may push a chair aside to pass
a narrow passage or we may change our locomotion to
lateral walking if the clearance allows this kind of pass-
ing. In this paper, we propose a unified approach to this
planning problem that put all motion abilities on the same
scale in order to create a sequence of various motions that
better match our daily experience.

We will organize the rest of the paper as follows. In the
next section, we will review the work related to our re-
search. In Section 3, we will formally describe our prob-
lem definition. In Section 4, we will describe how to plan
the motion of an actor to leap over obstacles. In Section
5, we will describe a new motion ability about moving
obstacles with a unified approach. In Section 6, we will
present the experimental results generated by our plan-
ning system.

2. Related Work

The problem of motion planning (or known as the
piano-mover’s problem) [6] has been well studied in the
field of robotics in the past three decades. A variety
of problems and algorithms can be found in Latombe’s
book [7]. Although the problem was motivated by robot
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Fig. 1. Illustration of object heights and offsets.

automation, the techniques developed for this problem has
been widely used in many other fields, including com-
puter animation, drug design, and many others. Accord-
ing to [8], most motion planners divide the planning pro-
cess into two phases: the preprocessing phase for convert-
ing the original geometric reasoning problem into some
abstract data structure (ADT) and the query phase where
we search the ADT for a feasible path.

Due to the complexity of a humanoid model, the plan-
ning problem for a humanoid digital actor is usually de-
coupled into a two-level problem: global motion plan-
ning for a feasible path connecting the initial and goal
configurations and local motion planning to realize the
global path with humanoid locomotion. In [9], the authors
represented the virtual environment with a layered struc-
ture consisting of objects of various heights such that the
global planner can take the terrain information and object
heights into account. In [3], the digital actor was further
equipped with several motion abilities such as jumping,
side-walking, and striding over deep gaps.

The problem of manipulating movable objects was
studied in some early work in robotics [4, 10, 11]. For
example, in [12], the controllability and planning of ob-
ject pushing has been studies for mobile robots. In [5],
moving obstacles was considered as a special ability of
the digital actor that can be used to find a path to reach
the goal that was originally unreachable. Given a goal
configuration of the actor, the planner first needs to know
whether a feasible path without moving obstacles exists
or not. If not, by analyzing the relations of the con-
nected components of the freespace, the planner can de-
cide which obstacles to move and attempt to move them
to some unobstructive positions. Although good exam-
ples have been demonstrated in this work, the workspace
is limited to a 2D plane and the ability of moving obsta-
cles is considered only when no feasible path exists. In
this paper, we would like to account for various motion
abilities in a more unified way for a more general scene
consisting of a layered 3D environment.

3. Problem Description

In our system, we assume that the workspace consists
of several objects (may be treated as obstacles) of various
heights and offsets from the reference ground as shown in
Fig. 1. We use the formulation of [9] to organize the ob-

stacles in the environment: objects of the same offset are
grouped into the same layer. The objects that are movable
by the actor are assumed to be given.

We assume that we are given the geometric and kine-
matics description of the humanoid actor. We also assume
that the actor is equipped with the motion abilities of (1)
frontal walking, (2) side walking, (3) jumping, (4) striding
over a gap, (5) leaping over an obstacle, and (6) moving
an object, where the last two abilities are added in this pa-
per based on the work of [3]. We know the maximal step
length that the actor can stride over and a maximal height
that the actor can step onto. Therefore, an object with a
height less than this maximal stepping height may not be
treated as an obstacle. If the actor needs to pass under
some obstacles in an upper layer, the clearance between
the two layers must be larger than the height of the actor.
For the newly introduced leaping motion, we assume that
there exists a maximal height and a maximal depth limit-
ing the geometry of the obstacles that the actor can leap
over.

4. Leaping over Obstacles

Compared to the work of [3], we have added a new mo-
tion ability: leaping over obstacles in this paper. An actor
with this ability will use his hands as a hold to leap over
an obstacle. However, not all obstacles can be leaped over
successfully. The height of the obstacle must be within a
range of �Hmin�Hmax� defined according to the kinematics
property of the humanoid. In addition, the depth of an
obstacle cannot be too large for the actor to leap over.

In order to find out the obstacles that can be leaped over,
we have used the Opening operator [13] commonly used
in Computer Vision to process the bitmap representing the
workspace. The operation (denoted by Æ) working on a set
A and a structure element B is defined as

AÆB � �AΘB��B . . . . . . . . . . . (1)

where Θ and�means erosion and dilation operations, re-
spectively. Each layer of the workspace is represented as
a map with each grid cell containing a height value. The
set of cells in this map with heights in �Hmin�Hmax� are
treated as A in Eq. (1). The structure element B in Eq. (1)
is a circle enclosing the geometry of the humanoid in per-
forming a maximal leaping motion. After the erosion op-
eration, the obstacle regions that can be leaped over will
disappear, and the regions that are too wide for leaping
will grow back to their original shape after the dilation op-
eration. For example, in Fig. 2, a height map (Fig. 2(b))
is first generated for the scene in Fig. 2(a), and the maps
after erosion and dilation are shown in Fig. 2(c) and 2(d).
Comparing to the original map, the region occupied by a
thin obstacle in the lower portion has disappeared and be-
comes reachable by the use of the leaping motion. The
resulting height map will then be used to build a potential
field to guide the search for a feasible path.
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Fig. 2. Opening operation (a) inclined view of the scene (b) original height map (c) after erosion (d) after dilation.

Fig. 3. (a) An inclined view of the scene with two movable obstacles (b) Skeleton, triggering point, and estimated path P.

5. Motion Planning with Movable Obstacles

Moving obstacles around to make space for passing is
a common strategy that a human uses to reach a destina-
tion. For example, we may move chairs around to pass
a cluttered environment even though there could be other
detoured doorways that can be used to reach the same des-
tination. The decision of moving obstacles depends not
only on the feasibility of creating a new path but also on
the efforts of making such a move. In this section, we will
describe our unified planning approach to take this special
motion ability into consideration.

5.1. Problem Definition

We assume that the movability of the obstacles with
respect to a given actor is specified by the user initially.
However, in order to avoid deadlocks, we allow an obsta-
cle to be moved only once. Thus, the movability of an
obstacle will be disabled after it has been moved. We also
assume that the available grasp or push points are given.
(In our current implementation, a grasp point could be any
point along the boundary of an obstacle.) An obstacle can
be moved on its own layer (plane) and the final location
needs to allow the obstacle to be placed stably. In ad-
dition, during the movement, it needs to avoid collisions
with other obstacles on the same layer or possibly on other
layers due to its height. We assume that the geometry of
the humanoid actor can be represented by an enclosing
circle. Thus, by growing the workspace by the radius (r�
of this circle, we can compute the corresponding configu-
ration space, where the robot (the actor) can be treated as
a point.

5.2. Estimating Actor’s Trespassing Path
In [5], the planning for moving obstacles is triggered

when the obstacles decompose the freespace into several
separated components. However, in our work, the at-
tempts to move obstacles are made when the obstacles are
blocking the paths that can potentially take the actor to
the goal. We first build a reachable region and a poten-
tial field [3] by ignoring all movable obstacles. Then, a
voronoi-diagram-like skeleton [14], as shown in Fig. 3,
is computed for the freespace by the use of the NF2 pro-
cedure described in [7]. The obstacles are then placed
back to the workspace when the search for the actor’s
path starts. The planning for moving an obstacle is evoked
when the search has reached a boundary cell of the mov-
able obstacle, denoted by Om. This boundary cell is called
triggering point (Cmt). We first compute an estimated path
for the actor to trespass the obstacle by temporarily ignor-
ing the obstacle. Then we try to move the obstacle out of
this path by defining another path planning problem for
it. The estimated path starts from Cmt and is connected
to the nearest point in the skeleton. We then continue to
search on the skeleton for a point (Cme� in the freespace.
This resulting estimated path, denoted by P and shown in
Fig. 3(b), will be used as the path of the actor that the
movable obstacle should avoid colliding with.

5.3. Planning for the Movable Obstacle
Once we have the estimated path for the actor, we can

define a path planning problem for the movable obstacle
as follows. The subject under our planning is the mov-
able obstacle (Om� that is treated as a free-flying object
on a plane with three degrees of freedom. Other obstacles
in the environment are treated as the obstacles for Om to
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Fig. 4. Creating planning instances for unified search.

avoid colliding during the planning. We use them to build
the C-obstacles in the 3-dimensional C-space of Om. The
initial configuration of Om interferes with the path P, and
our goal is to move it to a configuration without inter-
fering with the actor along the estimated path. We use a
breadth-first search algorithm to search for such a config-
uration. During the search, Om needs to remain collision-
free from all other obstacles at all layers and stay inside
the region of its current layer such that it can remain stable
after the move. In addition, in order to prevent Om from
being moved to a configuration that may block the return
path of the actor, we further require that at the found fi-
nal configuration, Om needs to keep a minimal distance
r from other obstacles such that the configuration of Om
does not prevent the actor from returning to its original
configuration before moving Om.

5.4. The Unified Approach

Our approach differs from the previous work in that we
do not pre-determine the necessity of moving an obstacle.
Instead, we hope that the search of moving an obstacle can
be considered along with the regular search for a feasible
motion of the actor. When the search for moving an obsta-
cle is triggered, we create a planning instance for it by du-
plicating the current system configuration, including the
configurations of the actor and other obstacles, at the mo-
ment. Then, a planning thread is spawn for this instance
and run in parallel with the original thread, as illustrated
in Fig. 4. However, instead of creating these planning in-
stances in different threads provided by the operating sys-
tem, we simulate the parallelism by allocating a specific
period of time Δt for a planning instance when it is se-
lected for planning. After this period of time, if no feasi-
ble solution for the movable obstacle is found, the control
will be temporarily returned to the system, and the plan-
ning instance will be inserted into a candidate list. This
planning instances may be evoked again at a later time,
and the search will continue from the leftover point in the
last run. If a planning instance succeeds, the planning for
the actor will continue by assuming that the movable ob-
stacle has been updated to its new configuration, as illus-
trated by circles in Fig. 4. We call this type of approach a
unified approach because different types of planning are

STABLE BFP(qi,qg�

1. install qi in T ;
2. INSERT(qi,OPEN); mark qi as visited;
3. SUCCESS �- FALSE;
4. while not EMPTY(OPEN) and not SUCCESS do
5. q �- FIRST(OPEN);
6. if q.manip is TRUE then
7. Manip Success �- q.Instance(Δt�
8. if Manip Success then
9. q.searchspace=

Create Searchspace(q.instance);
10. q.manip �- FALSE ;
11. INSERT(q ,OPEN);
12. else
13. for every neighbor q

�

of q in the grid do
14. if q

�

is trigger point
15. q

�

.instance �- Establish Instance();
16. q

�

.manip �- TRUE ;
17. Manip Success �- FALSE;
18. mark q

�

as visited;
19. if q

�

is stable
20. mark q

�

is visited;
21. if LEGAL(q

�

,q� then
22. install q

�

in T with a pointer toward q
23. INSERT(q

�

,OPEN);
24. if q

�

� qg then SUCCESS �- true;
25. if SUCCESS then
26. return the backtracked feasible path
27. else return failure;

Fig. 5. The STABLE BFP algorithm for global path planning.

considered simultaneously.

6. Global Planning with Multiple Motion Abil-
ities

Given the initial and goal configurations (qi and qg� and
motion abilities of a digital actor, our planner is supposed
to generate a feasible motion plan including the global
path and the chosen locomotion along the path that can
bring the actor to reach the goal. The planning algo-
rithm, called STABLE BFP, used in our planner is shown
in Fig. 5. The algorithm is a variation of the best-first
planning algorithm commonly used for path planning in a
low-dimensional space [7]. All candidate configurations
are stored in a list called OPEN, and the best configu-
ration defined according to some user-specified metric is
retrieved for further exploration by the FIRST function
(line 5) in each search loop. Similar to the A� algorithm,
the metric used in FIRST is defined as the accumulated
cost of getting to the current configuration and the esti-
mated cost of getting to the goal. The cost to the goal is
estimated by the potential field built from the goal in the
reachability map. The cost of getting to the current con-
figuration is defined as the cost of energy consumption for
the current locomotion. For the motion ability of moving
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Fig. 6. An illustrative scenario requiring an obstacle to be move along a long hallway (a) 3D view (b) height map and obstacle
location (c) path for moving the obstacle along the hallway.
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Fig. 7. (a) Inclined view of the experimental scene, (b) and (c) height maps, (d)-(g) resulting paths under different user preference
conditions.

obstacles, a constant additional cost is added after each
trial (of Δt time) in moving the obstacle in a planning in-
stance. Thus, a planning instance can continue after some
time if no other easier paths are found.

A few subroutines in the STABLE BFP procedure need
further explanations. When a configuration is regarded as
a triggering point, a planning instance will be created via
the Establish Instance() routine (line 15) and the status of
the triggering point will be set to “manipulation.” When
a configuration with the manipulation status is retrieved
through the FIRST operation, its associated planning in-
stance will continue to run for some given period of time.
If the result of this run is successful, a new search space
with updated obstacle configurations will be created via
the Create Searchspace() routine (line 9) and searched in
parallel with the original search space.

For a configuration whose status is not manipulation,
we will visit its neighbors and check their legality via the
LEGAL() subroutine. Similar to [3], a configuration is
defined as legal if it is unvisited, collision-free, and tem-
porarily stable. The stability of a given workspace is com-
puted according to the heights of neighboring cells. Three

types of unstable cells are currently defined: border, gap,
and barrier, and a stability counter for the allowable num-
ber of continuous cells of the same type is kept for each
configuration. A configuration is considered illegal if the
stability counter exceeds some given maximal value.

7. Experimental Results

The planning system described above has been imple-
mented in Java and tested on a regular PC with Intel 1.66
GHz CPU and 1024 MB RAM. The resolution of the grid
in the workspace is 256� 256. The height of the digital
actor is 160 cm, and the maximal step height is 40 cm.
The range of heights that the actor can leap over is be-
tween 70 and 95 cm, and the maximal depth for leaping is
100 cm.

We use the scene in Fig. 6 to test the ability of the ac-
tor in moving an obstacle for a long distance in a layered
environment. The scene consists of two layers and the
movable obstacle and the initial configuration of the ac-
tor (small dot at the lower-right corner) are on the second
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Fig. 8. Snapshots of the motions used by the actor to reach the goal.

layer while the goal configuration is on the first layer. The
only way that the actor can get down to the first layer is by
walking through the narrow hallway on the left and then
stepping down the stairs. However, a movable obstacle is
blocking the hallway. The planner succeeds in generating
a motion for the actor to pull the obstacle back along the
hallway until it can pass. The resulting path is shown in
Fig. 6(c).

Another example scene is shown in Fig. 7(a) to illus-
trate that the generated path may vary according to user
preference. Two square movable obstacles are shown in
light grey in Fig. 7(b) and the height of each object in
the scene is shown in Fig. 7(c). Four sets of preference
parameters are used to test this scene. In Fig. 7(d) (case
A), the user prefers shorter path and thus a path requiring
moving an obstacle and leaping over a fence is generated.
In Fig. 7(e) (case B), the preference parameters are the
same as case A expect for that the weight for the leaping
motion is reduced. In Fig. 7(f) (case C) and 7(g) (case D),
the weights for moving obstacles are slightly and greatly
reduced, respectively. The actor may end up making a
long detour as in the last case. This is also the path that
can be generated by the approach in [5] because there is
no separated connected component in freespace. In con-
trast, our unified planning approach is more flexible in
taking advantage of various motion abilities. The over-
all computation times for these four cases are 484, 1672,
1750, and 985 ms, respectively. Snapshots of the actor
executing various motions to realize the generated path
for case A are shown in Fig. 8. The actor first pulls the
obstacle out to enter the hallway and leaps over a fence
afterward. Then, it turns to step onto a stairway to the
second floor where the goal is located.

8. Conclusion

Based on our previous work on enabling humanoid dig-
ital actor to move with various motion abilities on a lay-
ered environment, we have extended a digital actor to have

two more motion abilities: leaping over obstacles and
moving obstacles. The planning for leaping motion can be
treated with an OPENING operation, which is very sim-
ilar to the CLOSING operation for the ability of striding
over deep gap. Unlike previous work in planning movable
objects, we have proposed a unified approach to gener-
ate motion plans that can take all motion abilities, includ-
ing moving obstacles, into account at the same time. The
experimental results reveal that versatile motions can be
generated interactively for a humanoid actor according to
user’s preference on these abilities.
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