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Abstract 

 
Effective data management is crucial for interac-

tive multimedia applications due to the large amount 
of data that need to be processed on-line. When the 
size of a 3D virtual world is larger than the available 
physical memory of a display client, we need to pro-
actively maintain useful data in the memory for im-
mediate or future graphics rendering. Traditional 
page-based data management scheme becomes insuf-
ficient for applications with strong spatial and tem-
poral coherence. In this paper we describe a 3D 
navigation system for visualizing large virtual envi-
ronments. In the system we propose novel data man-
agement techniques based on discrete visibility pre-
computation, hybrid cache model, and prioritized 
spatial prefetching. Our preliminary experimental 
results show that these techniques can improve re-
sponse time and navigation smoothness.  

1. Introduction 

Interactive 3D graphics were only possible on ex-
pensive workstations equipped with special graphics 
hardware a few years ago. However, as the computing 
power of personal computers increase and 3D accel-
eration cards become more affordable, one can now 
experience Virtual Reality (VR) on a regular desktop 
PC. For example, with the development of Virtual 
Reality Modeling Language (VRML)[15], one can 
use a regular web browser on a PC to remotely navi-
gate a virtual scene downloaded from the network. 
However, as the contents in cyberspace become richer, 
it is likely that a whole virtual scene does not fit into 
available physical memory any more. Therefore, how 
to manage a large virtual scene effectively while 
maintaining interactive visualization becomes a 
emerging issue that needs to be addressed.  

Data management is crucial in many multimedia 
applications due to the amount of data that needs to be 
processed on-line. A 3D virtual world consists of 3D 
models of objects at their designated configurations. 
For large virtual worlds, these geometric models are 
typically organized in a database management system 

on a remote server. When we navigate in these worlds, 
we can only see a small portion of the objects in the 
world under a first-person view model. Therefore, 
most virtual worlds on the network today partition a 
world into manageable subspaces connected through 
portal locations [3]. Only the objects in the current 
partition are loaded for graphics rendering. However, 
such a partitioning scheme is adequate only for spaces 
with appropriate natural partitions such as large oc-
cluders. In addition, the delay and discontinuity in-
troduced in scene swapping is usually very disturbing. 
Therefore, it is more desirable for the system to in-
corporate a flexible object management scheme that 
can provide continuous and smooth navigation in a 
large-scale virtual environment.  

In this paper we address the issue of managing 
spatial data effectively for interactive visualization of 
a large virtual environment. Specially, we first pre-
compute the set of visible objects at discrete view-
point configurations. When the viewpoint moves, we 
use this information to quickly identify the objects 
that need to be loaded at run-time. Secondly, the ob-
jects are loaded through a cache mechanism such that 
more relevant object models can be held in local 
memory for faster accesses. In addition, the system 
proactively predicts the possible future configurations 
of the viewpoint based on the current direction and 
velocity. Our preliminary experimental results show 
that these data management techniques improve the 
usability of the system and make the visualization of 
large virtual world more effective.  

2. Related work 

The problem of managing large amounts of data 
for interactive building walkthroughs has been studied 
since the early 90’s[1][14][10]. Several systems have 
been built to demonstrate their proposed data man-
agement schemes. The topics that have been ad-
dressed include visibility preprocessing, levels of de-
tail, data caching, and object prefetching.[4][6] 
[8][10][14] However, most of these experimental sys-
tems require expensive multiple-processor hardware 
for parallel processing of data retrieval and graphics 
rendering. For example, in [2], a powerful 
multi-processor workstation is used to visualize a 
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large power plant.  
As the computing power on PC’s is increasing, the 

desire to populate these research results onto PC’s 
also increase. Recently more and more virtual envi-
ronment researches start to address the scalability 
problem on the PC platform.[4][11][12] Most of these 
systems focus on reducing communication complexity 
when the number of clients increases. They utilize 
inter-object spatial relations and more appropriate 
communication protocols (such as multicast) to re-
duce the amount of data for transmission[12]. Some 
other studies consider the data management problem 
in a large-scale world from a client’s point of 
view[5][6][9]. This is also the focus of this paper.   

Determining the set of visible objects at the current 
viewpoint in a large 3D virtual world is usually car-
ried out in a preprocessing step due to the computa-
tion complexity involved. In [14], a k-D tree is used to 
partition the world into cells connected through por-
tals. The visibility between these cells is then ana-
lyzed. Several previous works in computational ge-
ometry also focuses on representing and computing 
global visibility information in a virtual world. 
[7][8][13] 

Caching is a common technique that retains more 
relevant data for faster accesses. Many replacement 
policies for caching have been proposed but no uni-
versally best policy is found. The well-known 
Least-Recently-Used (LRU) policy is a good one in 
general for data with temporal locality. However, it 
does not perform as well for spatial data[9]. In [5], an 
effective cache replacement policy, called Most Re-
quired Models (MRM), was introduced, based on 
multiple resolutions of an object that can be transmit-
ted progressively.  

A good prefetching strategy can help system per-
formance on the smoothness of user navigation. Most 
previous systems prefetch only the next predicted 
viewpoint configuration.[5][14] However, the system 
may suffer from noticeable delays when the visible set 
of objects change dramatically as the user changes the 
viewpoint motion. On the other hand, although pre-
fetching data for more than a single configuration may 
increase the hit ratio in the future frames, it also could 
introduce unnecessary false retrievals. 

3. System architecture 

In this section, we describe the techniques that we 
propose for effective data management. We assume 
the current configuration (qc) of the viewpoint is rep-
resented by three parameters: (x, y, θ). A user uses a 
2D mouse to control the virtual world. The horizontal 
and vertical components of the vector dragged out by 
the user represent the linear velocity (v) along the 
viewing direction and the angular velocity (ω) of the 

viewpoint, respectively. These velocities are used to 
update viewpoint configurations. The next predicted 
configuration is denoted by qp. 

Since no multi-processor capability is assumed, 
object retrieval and graphics rendering need to be 
performed in each frame update. We assume that the 
time for each frame update, denoted by t, is composed 
of three components: the time for retrieving objects 
for the current frame (tc), the time for graphics ren-
dering (tg) and the time for retrieving the predicted 
objects in future frames (tp). For a specified frame rate, 
the system first ensures that the information for the 
current frame can be updated correctly and then use 
the remaining time to retrieve object models for future 
frames. 

3.1. Visibility pre-computation 

We assume that the virtual world does not change 
during the course of user navigation. The visible re-
gion, the cone depicted in Figure 1, for a viewpoint 
configuration q is denoted by R(q). We pre-compute 
the distinct sets of visible objects for all possible dis-
crete q’s at a certain resolution. The resolution is cho-
sen such that the R’s for neighboring q’s overlap. The 
set of visible objects, denoted by sq, is called visible 
set for a given q. Since sq does not necessarily change 
as q changes, we compute and store these distinct sq‘s 
in a list, referenced by all q’s.  

At run-time, we use these pre-computed visible 
sets to quickly identify the set of objects that need to 
be retrieved. However, a general q does not necessar-
ily fall onto the grid points of our resolution. Snap-
ping a configuration into the nearest grid point may 
not give us a correct visible set. Therefore, we take a 
more conservative approach by retrieving objects in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: an example of visible objects from a 
viewpoint configuration in a sample world 
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the union of sq‘s for all of q‘s 1-neighbors on the grid. 
Since the resolution is chosen such that neighboring 
R’s overlap, no objects are missed with such an ap-
proach. 

3.2. Object prefetching 

In an ideal navigation system, we desire a consis-
tent and high frame rate. High frame rate makes a 
system more responsive, while a consistent frame rate 
makes a system more predictable and easy to control. 
For each frame update, we are allowed to spend some 
time tp to retrieve future object models. Although this 
allowable time may vary for each frame, it is impor-
tant to have a flexible prediction strategy that can 
make good use of the remaining time to retrieve the 
most relevant objects for the near future.  

A good prefetching strategy directly affects the 
usefulness of the retrieved models. Instead of retriev-
ing only the objects for a single predicted configura-
tion qp, we retrieve the objects for a list of configura-
tions in the close neighborhood of qp. In the allowable 
period of time, objects are retrieved according to the 
order of their relevance to qp. The relevance of a con-
figuration is defined according to four factors: (1) the 
distance from the current viewpoint location (d), (2) 
the viewing direction (θ), and (3) the linear velocity (v) 
and (4) angular velocity (ω) of the viewpoint. We use 
a continuous quadratic surface to define a quantitative 
relevance value for a configuration with respect to qp.  

Assume that the neighboring points of a given con-
figuration are defined in the form of polar coordinate 
system: (d, φ) with the origin at qp, as depicted in Fig-
ure 2. The parameter d is the Euclidean distance from 
the origin, and φ is defined as the angle from the view 
direction. We use a parabolic function:  

 w(a, d) = -ad2 + c, (c: constant) (1) 

along a ray emanating from qp to formulate the rele-
vance value (w) of any q’s. The shape of the surface 
mainly depends on the absolute value and the change 
rate of the drop-down parameter a. Larger a means 
faster dropping rate along a ray.  

The value of a, as a function of φ, increases line-

arly from the given viewing orientation (θ or φ=0) 
toward both clockwise and counter-clockwise direc-
tions (possibly with different decreasing rates), as 
shown on the right of Figure 2. Two parameters affect 
the shape of the relevance function: the maximal val-
ue of a (amax) and its corresponding orientation (φ max). 
We adjust these two parameters according to the 
linear speed (v) and angular speed (ω) of the view-
point motion. As v increases, amax should also be set to 
a larger value to make the configurations behind the 
origin less relevant. As ω increases counter-clockwise, 
the apex point φmax should also be shifted toward the 
positive direction from the center (π).  

In our current system, we use a 5-by-5 relevance 
mask to define the relevance value of neighboring 
configurations. The configuration qp is located at the 
center of the mask or is offset by one cell for large v 
to accommodate more relevant configurations. To find 
the relevance value for a configuration q in the mask, 
we first determine the apex point (φ max,, amax) in Fig-
ure 2 according to the current v and ω and then com-
pute a according to the orientation (φ) of q under con-
sideration. We then use this value a and eq.(1) to 
compute the relevance value for q. Examples of com-
puted relevance masks are shown in Figure 3. Con-
figurations of higher relevance values will have 
higher priorities in the prefetching queue for retriev-
ing their visible sets. 

3.3. Cache model  

The LRU replacement policy takes advantages of 
the temporal locality to speed up page-based data re-
trieval. However, the sequence of data retrieved in a 
virtual world also possesses high degree of spatial 
locality. Therefore, we propose to take a hybrid ap-
proach of using both the access time and the relevance 
value of the q’s to account for both the temporal and 

 
 
 
 
 
 
 
 
 
Figure 2: determining the parameter a in eq. 

(1) for the relevance function 
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Figure 3: sample relevance masks for differ-
ent linear and angular velocities 
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spatial localities. For objects retrieved at different 
frame updates, we adopt the traditional LRU policy at 
the frame level. For objects retrieved for the same 
frame (possibly due to prefetching), we use the rele-
vance values of the associated viewpoint configura-
tions to order the replacement queue for caching. 
Therefore, the cache model is consistent with the pre-
fetching strategies used above while the advantages of 
the LRU policy is also partially kept. 

4. Experiments 

The system architecture is shown in Figure 4. The 
object retrieval and cache management module is the 
main concern of this paper. Geometric models are 
retrieved from the object server through the JDBC 
interface. The 3D-display module is a VRML browser 
although the type of geometry representation does not 
limit the underlining data management scheme. The 
experiments are conducted in a 2D simulated envi-
ronment where the object retrieval time and graphics 
rendering time are estimated according to the size of 
object models. The system frame rate is partially de-
termined by the allowable prefetching time, which is 
adjustable for the tradeoff of display smoothness. The 
data management module is currently implemented in 
the Java language and provides a 2D graphical inter-
face such as the one shown in Figure 5, to assist user 
navigation.  

4.1. Results 

The experiments are conducted on a sample colli-
sion-free navigation path generated by a path planner. 
The viewpoint along the same path is simulated with 
various experimental parameters for comparisons. As 
shown in Table 1, statistic data including average time 
for a frame update (tave), standard deviation time (σ), 
and cache hit ratio (α) are collected in each experi-
ment. The time for updating a frame includes both 
graphics rendering time and data retrieval time. The 
sample viewpoint path consists of 1068 steps as 
shown in Figure 5. When the cache mechanism is 
introduced, both tave and σ are improved. However, α 

is only 44%. When the traditional one-step prefetch-
ing is introduced, tave is slightly higher but σ and α are 
improved. When the proposed relevance mask is used 
for prefetching, σ and α are further improved. How-
ever, tave is also increased. 

4.2. Discussions 

For objective comparisons, we use the same navi-
gation path for each experiment. The system per-
formance is greatly improved by adopting the caching 
mechanism as one can expect. However, the hit ratio 
is low when the LRU cache replacement policy is 
used. This is due to the facts that the viewpoint sel-
dom returns to the same configuration in the test path 
and the LRU policy does not accounts for spatial lo-
cality. In addition, the traditional one-step prefetching 
may not be effective if no new objects need to be re-
trieved for the predicted configuration or the predicted 
configuration is not correct. By adopting a prioritized 
prefetching strategy for a range of configurations, we 
can trade some frame rate (average update time) with 
navigation smoothness (standard deviation).  

5. Conclusions and Future Work 

In this paper we have described a data management 
scheme that utilizes discrete visibility precomputation, 
hybrid cache replacement policy, and prioritized ob-
ject prefetching to achieve interactive visualization of 
large virtual worlds. The preliminary experiments 
show encouraging results on the effectiveness of these 
techniques. We need to further test this system on 
more realistic examples and conduct more experi-
ments to find out the effects of available cache size 

 

 

 

 

 

 
 

Figure 4: system architecture 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: An example of large virtual envi-

ronment and navigation path for experiments 
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and allowable prefetching time. 
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Table 1: comparison of experimental system 
with difference parameters 

 case 1 case 2 case 3 case 4 
AVRG (ms) 143 127 128 144 
STD (ms) 93 61 57 53 

Hit Ratio (%) N/A 44 54 89 
case 1: no caching or prefetching 
case 2: LRU caching only 
case 3: w/ caching and one-step prefetching 
case 4: w/ caching and relevance mask prefetching 


