
1

Data Management for Visualizing Large Virtual Environments

Tsai-Yen Li and Chih-Wei Chiang
Computer Science Department, National Chengchi University

64, Sec.2, Chih-Nan Road, Taipei, Taiwan 11623, ROC
e-mail: {li, s8409}@cs.nccu.edu.tw

Abstract

Effective data management is crucial for interac-

tive multimedia applications due to the large amount
of data that need to be processed on-line. When the
size of a 3D virtual world is larger than the available
physical memory of a display client, we need to pro-
actively maintain useful data in the memory for im-
mediate or future graphics rendering. Traditional
page-based data management scheme becomes insuf-
ficient for applications with strong spatial and tem-
poral coherence. In this paper we describe a 3D
navigation system for visualizing large virtual envi-
ronments. In the system we propose novel data man-
agement techniques based on discrete visibility pre-
computation, hybrid cache model, and prioritized
spatial prefetching. Our preliminary experimental
results show that these techniques can improve re-
sponse time and navigation smoothness.

1. Introduction

Interactive 3D graphics were only possible on ex-
pensive workstations equipped with special graphics
hardware a few years ago. However, as the computing
power of personal computers increase and 3D accel-
eration cards become more affordable, one can now
experience Virtual Reality (VR) on a regular desktop
PC. For example, with the development of Virtual
Reality Modeling Language (VRML)[15], one can
use a regular web browser on a PC to remotely navi-
gate a virtual scene downloaded from the network.
However, as the contents in cyberspace become richer,
it is likely that a whole virtual scene does not fit into
available physical memory any more. Therefore, how
to manage a large virtual scene effectively while
maintaining interactive visualization becomes a
emerging issue that needs to be addressed.

Data management is crucial in many multimedia
applications due to the amount of data that needs to be
processed on-line. A 3D virtual world consists of 3D
models of objects at their designated configurations.
For large virtual worlds, these geometric models are
typically organized in a database management system

on a remote server. When we navigate in these worlds,
we can only see a small portion of the objects in the
world under a first-person view model. Therefore,
most virtual worlds on the network today partition a
world into manageable subspaces connected through
portal locations [3]. Only the objects in the current
partition are loaded for graphics rendering. However,
such a partitioning scheme is adequate only for spaces
with appropriate natural partitions such as large oc-
cluders. In addition, the delay and discontinuity in-
troduced in scene swapping is usually very disturbing.
Therefore, it is more desirable for the system to in-
corporate a flexible object management scheme that
can provide continuous and smooth navigation in a
large-scale virtual environment.

In this paper we address the issue of managing
spatial data effectively for interactive visualization of
a large virtual environment. Specially, we first pre-
compute the set of visible objects at discrete view-
point configurations. When the viewpoint moves, we
use this information to quickly identify the objects
that need to be loaded at run-time. Secondly, the ob-
jects are loaded through a cache mechanism such that
more relevant object models can be held in local
memory for faster accesses. In addition, the system
proactively predicts the possible future configurations
of the viewpoint based on the current direction and
velocity. Our preliminary experimental results show
that these data management techniques improve the
usability of the system and make the visualization of
large virtual world more effective.

2. Related work

The problem of managing large amounts of data
for interactive building walkthroughs has been studied
since the early 90’s[1][14][10]. Several systems have
been built to demonstrate their proposed data man-
agement schemes. The topics that have been ad-
dressed include visibility preprocessing, levels of de-
tail, data caching, and object prefetching.[4][6]
[8][10][14] However, most of these experimental sys-
tems require expensive multiple-processor hardware
for parallel processing of data retrieval and graphics
rendering. For example, in [2], a powerful
multi-processor workstation is used to visualize a

Appear in Proceedings of 1999 International Symposium on
Multimedia Information Processing, 1999

2

large power plant.
As the computing power on PC’s is increasing, the

desire to populate these research results onto PC’s
also increase. Recently more and more virtual envi-
ronment researches start to address the scalability
problem on the PC platform.[4][11][12] Most of these
systems focus on reducing communication complexity
when the number of clients increases. They utilize
inter-object spatial relations and more appropriate
communication protocols (such as multicast) to re-
duce the amount of data for transmission[12]. Some
other studies consider the data management problem
in a large-scale world from a client’s point of
view[5][6][9]. This is also the focus of this paper.

Determining the set of visible objects at the current
viewpoint in a large 3D virtual world is usually car-
ried out in a preprocessing step due to the computa-
tion complexity involved. In [14], a k-D tree is used to
partition the world into cells connected through por-
tals. The visibility between these cells is then ana-
lyzed. Several previous works in computational ge-
ometry also focuses on representing and computing
global visibility information in a virtual world.
[7][8][13]

Caching is a common technique that retains more
relevant data for faster accesses. Many replacement
policies for caching have been proposed but no uni-
versally best policy is found. The well-known
Least-Recently-Used (LRU) policy is a good one in
general for data with temporal locality. However, it
does not perform as well for spatial data[9]. In [5], an
effective cache replacement policy, called Most Re-
quired Models (MRM), was introduced, based on
multiple resolutions of an object that can be transmit-
ted progressively.

A good prefetching strategy can help system per-
formance on the smoothness of user navigation. Most
previous systems prefetch only the next predicted
viewpoint configuration.[5][14] However, the system
may suffer from noticeable delays when the visible set
of objects change dramatically as the user changes the
viewpoint motion. On the other hand, although pre-
fetching data for more than a single configuration may
increase the hit ratio in the future frames, it also could
introduce unnecessary false retrievals.

3. System architecture

In this section, we describe the techniques that we
propose for effective data management. We assume
the current configuration (qc) of the viewpoint is rep-
resented by three parameters: (x, y, θ). A user uses a
2D mouse to control the virtual world. The horizontal
and vertical components of the vector dragged out by
the user represent the linear velocity (v) along the
viewing direction and the angular velocity (ω) of the

viewpoint, respectively. These velocities are used to
update viewpoint configurations. The next predicted
configuration is denoted by qp.

Since no multi-processor capability is assumed,
object retrieval and graphics rendering need to be
performed in each frame update. We assume that the
time for each frame update, denoted by t, is composed
of three components: the time for retrieving objects
for the current frame (tc), the time for graphics ren-
dering (tg) and the time for retrieving the predicted
objects in future frames (tp). For a specified frame rate,
the system first ensures that the information for the
current frame can be updated correctly and then use
the remaining time to retrieve object models for future
frames.

3.1. Visibility pre-computation

We assume that the virtual world does not change
during the course of user navigation. The visible re-
gion, the cone depicted in Figure 1, for a viewpoint
configuration q is denoted by R(q). We pre-compute
the distinct sets of visible objects for all possible dis-
crete q’s at a certain resolution. The resolution is cho-
sen such that the R’s for neighboring q’s overlap. The
set of visible objects, denoted by sq, is called visible
set for a given q. Since sq does not necessarily change
as q changes, we compute and store these distinct sq‘s
in a list, referenced by all q’s.

At run-time, we use these pre-computed visible
sets to quickly identify the set of objects that need to
be retrieved. However, a general q does not necessar-
ily fall onto the grid points of our resolution. Snap-
ping a configuration into the nearest grid point may
not give us a correct visible set. Therefore, we take a
more conservative approach by retrieving objects in

Figure 1: an example of visible objects from a
viewpoint configuration in a sample world

3

the union of sq‘s for all of q‘s 1-neighbors on the grid.
Since the resolution is chosen such that neighboring
R’s overlap, no objects are missed with such an ap-
proach.

3.2. Object prefetching

In an ideal navigation system, we desire a consis-
tent and high frame rate. High frame rate makes a
system more responsive, while a consistent frame rate
makes a system more predictable and easy to control.
For each frame update, we are allowed to spend some
time tp to retrieve future object models. Although this
allowable time may vary for each frame, it is impor-
tant to have a flexible prediction strategy that can
make good use of the remaining time to retrieve the
most relevant objects for the near future.

A good prefetching strategy directly affects the
usefulness of the retrieved models. Instead of retriev-
ing only the objects for a single predicted configura-
tion qp, we retrieve the objects for a list of configura-
tions in the close neighborhood of qp. In the allowable
period of time, objects are retrieved according to the
order of their relevance to qp. The relevance of a con-
figuration is defined according to four factors: (1) the
distance from the current viewpoint location (d), (2)
the viewing direction (θ), and (3) the linear velocity (v)
and (4) angular velocity (ω) of the viewpoint. We use
a continuous quadratic surface to define a quantitative
relevance value for a configuration with respect to qp.

Assume that the neighboring points of a given con-
figuration are defined in the form of polar coordinate
system: (d, φ) with the origin at qp, as depicted in Fig-
ure 2. The parameter d is the Euclidean distance from
the origin, and φ is defined as the angle from the view
direction. We use a parabolic function:

 w(a, d) = -ad2 + c, (c: constant) (1)

along a ray emanating from qp to formulate the rele-
vance value (w) of any q’s. The shape of the surface
mainly depends on the absolute value and the change
rate of the drop-down parameter a. Larger a means
faster dropping rate along a ray.

The value of a, as a function of φ, increases line-

arly from the given viewing orientation (θ or φ=0)
toward both clockwise and counter-clockwise direc-
tions (possibly with different decreasing rates), as
shown on the right of Figure 2. Two parameters affect
the shape of the relevance function: the maximal val-
ue of a (amax) and its corresponding orientation (φ max).
We adjust these two parameters according to the
linear speed (v) and angular speed (ω) of the view-
point motion. As v increases, amax should also be set to
a larger value to make the configurations behind the
origin less relevant. As ω increases counter-clockwise,
the apex point φmax should also be shifted toward the
positive direction from the center (π).

In our current system, we use a 5-by-5 relevance
mask to define the relevance value of neighboring
configurations. The configuration qp is located at the
center of the mask or is offset by one cell for large v
to accommodate more relevant configurations. To find
the relevance value for a configuration q in the mask,
we first determine the apex point (φ max,, amax) in Fig-
ure 2 according to the current v and ω and then com-
pute a according to the orientation (φ) of q under con-
sideration. We then use this value a and eq.(1) to
compute the relevance value for q. Examples of com-
puted relevance masks are shown in Figure 3. Con-
figurations of higher relevance values will have
higher priorities in the prefetching queue for retriev-
ing their visible sets.

3.3. Cache model

The LRU replacement policy takes advantages of
the temporal locality to speed up page-based data re-
trieval. However, the sequence of data retrieved in a
virtual world also possesses high degree of spatial
locality. Therefore, we propose to take a hybrid ap-
proach of using both the access time and the relevance
value of the q’s to account for both the temporal and

Figure 2: determining the parameter a in eq.

(1) for the relevance function

209 235 251 235 209 182 219 246 219 182

216 243 254 243 216 197 231 251 231 197

213 244 255 244 213 206 240 254 240 206

188 224 235 224 188 201 241 255 241 201

133 169 175 169 133 170 216 229 216 170

 (a) v =0, ω =0 (b) v =0.5, ω =0
193 230 251 239 217 157 209 246 225 195

202 239 254 245 224 177 224 251 235 209

197 240 255 246 221 188 235 254 243 216

162 216 239 230 202 181 236 255 244 213

100 165 192 187 158 136 205 235 224 188

 (c) v =0, ω =-0.5 (d) v =0.5, ω =-0.5

Figure 3: sample relevance masks for differ-
ent linear and angular velocities

a

φ 0 360 180

amax

amin

φmax

m = (φmax amax)

qp

φ =φmax

φ = 0

a↑

q(d, φ)

4

spatial localities. For objects retrieved at different
frame updates, we adopt the traditional LRU policy at
the frame level. For objects retrieved for the same
frame (possibly due to prefetching), we use the rele-
vance values of the associated viewpoint configura-
tions to order the replacement queue for caching.
Therefore, the cache model is consistent with the pre-
fetching strategies used above while the advantages of
the LRU policy is also partially kept.

4. Experiments

The system architecture is shown in Figure 4. The
object retrieval and cache management module is the
main concern of this paper. Geometric models are
retrieved from the object server through the JDBC
interface. The 3D-display module is a VRML browser
although the type of geometry representation does not
limit the underlining data management scheme. The
experiments are conducted in a 2D simulated envi-
ronment where the object retrieval time and graphics
rendering time are estimated according to the size of
object models. The system frame rate is partially de-
termined by the allowable prefetching time, which is
adjustable for the tradeoff of display smoothness. The
data management module is currently implemented in
the Java language and provides a 2D graphical inter-
face such as the one shown in Figure 5, to assist user
navigation.

4.1. Results

The experiments are conducted on a sample colli-
sion-free navigation path generated by a path planner.
The viewpoint along the same path is simulated with
various experimental parameters for comparisons. As
shown in Table 1, statistic data including average time
for a frame update (tave), standard deviation time (σ),
and cache hit ratio (α) are collected in each experi-
ment. The time for updating a frame includes both
graphics rendering time and data retrieval time. The
sample viewpoint path consists of 1068 steps as
shown in Figure 5. When the cache mechanism is
introduced, both tave and σ are improved. However, α

is only 44%. When the traditional one-step prefetch-
ing is introduced, tave is slightly higher but σ and α are
improved. When the proposed relevance mask is used
for prefetching, σ and α are further improved. How-
ever, tave is also increased.

4.2. Discussions

For objective comparisons, we use the same navi-
gation path for each experiment. The system per-
formance is greatly improved by adopting the caching
mechanism as one can expect. However, the hit ratio
is low when the LRU cache replacement policy is
used. This is due to the facts that the viewpoint sel-
dom returns to the same configuration in the test path
and the LRU policy does not accounts for spatial lo-
cality. In addition, the traditional one-step prefetching
may not be effective if no new objects need to be re-
trieved for the predicted configuration or the predicted
configuration is not correct. By adopting a prioritized
prefetching strategy for a range of configurations, we
can trade some frame rate (average update time) with
navigation smoothness (standard deviation).

5. Conclusions and Future Work

In this paper we have described a data management
scheme that utilizes discrete visibility precomputation,
hybrid cache replacement policy, and prioritized ob-
ject prefetching to achieve interactive visualization of
large virtual worlds. The preliminary experiments
show encouraging results on the effectiveness of these
techniques. We need to further test this system on
more realistic examples and conduct more experi-
ments to find out the effects of available cache size

Figure 4: system architecture

Figure 5: An example of large virtual envi-

ronment and navigation path for experiments

Object Server

Display Client

3D Display

Object Retrieval
and Cache

Management

DBMS for
World Models

JDBC

5

and allowable prefetching time.

References

[1] J. Airey, J. Rohlf, and F. Brooks, “Towards Image Re-
alism with Interactive Update Rates in Complex Vir-
tual Building Environments,” in ACM 1990 Sympo-
sium on Interactive 3D Graphics, pp. 41-50, 1990.

[2] D. Aliaga, et. al., “MMR: An Interactive Massive
Model Rendering System Using Geometric and Im-
age-Base Acceleration,” in Proceedings of 1999 Sym-
posium on Interactive 3D Graphics, pp. 199-206,
1999.

[3] Blaxxun Interactive, Blaxxun Community–Cypertown,
http://www.blaxxun.com/community/index.html.

[4] C. Carlsson and I. Hagsand, “DIVE – a Multi-User
Virtual Reality System,” in Proceedings of IEEE Vir-
tual Reality Annual International Symposium, pp.
394-400, 1993.

[5] J. Chim, R. Lau, H. Leong, and A. Si,
“Multi-Resolution Cache Management in Digital Vir-
tual Library,” in Proceedings of IEEE Advances in
Digital Library, pp. 66-75, 1998.

[6] J. Chim, R. Lau, A. Si, H. Leong, D. To, M. Green,
and M, Lam, “Multi-Resolution Model Transmission
in Distributed Virtual Environment,” in Proceedings
of ACM Virtual Reality Software Technology

(VRST’98), pp. 25-34, Taipei, Taiwan, Nov. 1998.

[7] S. Coorg, and S. Teller, “Temporally Coherent Con-
servative Visibility,” in Proceedings of ACM Confer-
ence on Computation Geometry, pp. 78-87, 1996.

[8] F. Durand, G. Drettakis, and C. Puech, “The Visibility
Skeleton: A Powerful And Efficient Multi-Purpose
Global Visibility Tool,” in Proceedings of ACM
Computer Graphics Conference (SIGGRAPH97), pp.
89-100, 1997.

[9] M. Franklin, M. Carey, and M. Livny, “Global Mem-
ory Management in Client-Server DBMS Architec-
tures,” in Proceedings of the International Conference
on Very Large Database, pp596-609, 1992.

[10] T. A. Funkhouser, C. H. Sequin, and S. Teller, “Man-
agement of Large Amounts of Data in Interactive
Building Walkthroughs,” in Proceedings of ACM
Symposium on Interactive 3D Graphics, pp. 11-20,
1992.

[11] T.Y. Li, J.M. Lien, S.Y. Chiu, and T.H. Yu, “Auto-
matically Generating Virtual Guided Tours,” in Pro-
ceedings of the Computer Animation '99 Conference,
Geneva, Switzerland, pp99-106, May 1999.

[12] M. Macedoniam M. Zyda, D. Pratt, P. Brutzman, and
P Barham, “Exploiting Reality with Multicast Groups:
A Network Architecture for Large-Scale Virtual En-
vironments,” in Proceedings of IEEE Virtual Reality
Annual International Symposium, pp 2-10, 1995.

[13] M. Pocchiola, and G. Vegter, “The Visibility Com-
plex,” in Proceedings of 9th ACM Annual Computa-
tional Geometry, pp. 328-337, 1993.

[14] S. Teller and C. Sequin, “Visibility Preprocessing for
Interactive Walkthroughs,” in Proceedings of ACM
Computer Graphics Conference (SIGGRAPH91),
pp.61-69, 1991.

[15] VRML97 International Standard, URL:
http://www.web3d.org/technicalinfo/specifications/vr
ml97/index.htm

Table 1: comparison of experimental system
with difference parameters

 case 1 case 2 case 3 case 4
AVRG (ms) 143 127 128 144
STD (ms) 93 61 57 53

Hit Ratio (%) N/A 44 54 89
case 1: no caching or prefetching
case 2: LRU caching only
case 3: w/ caching and one-step prefetching
case 4: w/ caching and relevance mask prefetching

