
Preprints of the Third International

Symposium on Experimental Robotics

Kyoto, Japan, Oct. 28-30, 1993

Experimental Integration of Planning

in a Distributed Control System

Gerardo Pardo-Castellote�, Tsai-Yen Liy, Yoshihito Kogaz,

Robert H. Cannon, Jr.x , Jean-Claude Latombe{, Stanley A. Schneiderk

Stanford University

Stanford, California 94305

1. Introduction

Automation and ease-of-operation are two goals of

robotic systems. Ideally, one would specify a high-

level task such as an assembly and have it happen

automatically. To achieve these goals, sophisticated

modules such as planners, user interfaces, controllers

etc. are being developed. However, the complexity of

these modules and the fact that they are often devel-

oped at di�erent times by di�erent groups of people

make system integration and testing very time con-

suming and often problem-speci�c.

In a joint e�ort, the Computer Science Robotics

Laboratory and the Aerospace Robotics Laboratory at

Stanford University have developed a
exible experi-

mental test-bed to explore these issues. Our goal is to

achieve task-level operation on a distributed robotic

system in a dynamic environment.

The experimental demonstration is illustrated in

Figure 1. Two 4-DOF arms manipulate parts in a

dynamic environment containing both static and mov-

ing obstacles and parts. The parts are supplied by a

conveyor. A vision system identi�es and tracks the

moving parts which are acquired by the robot while

in motion. Several e�cient path planning modules

are also implemented to deliver and assemble parts

while avoiding the obstacles in the workspace. Due to

their size and weight, some of the parts require coop-

erative manipulation and regrasping by the two arms

while others are manipulated by a single arm. The

user monitors and issues task-level commands using a

graphical user-interface.

2. System Architecture

�
Ph.D. Candidate, Department of Electrical Engineering.

y
Ph.D. Candidate, Department of Mechanical Engineering.

z
Ph.D. Candidate, Department of Mechanical Engineering.

x
Professor, Department of Aeronautics and Astronautics.

{
Professor, Department of Computer Science.

k
Ph.D., Real Time Innovations Inc.

Figure 1. Experimental Demonstration

Experimental demonstration consisting of a robotic as-

sembly in the presence of moving objects. The robot

has two 4-DOF arms. The parts are delivered by a con-

veyor.

Our experimental test-bed is composed of �ve mod-

ules as illustrated in Figure 2. The user-interface re-

ceives state information from the robot and sensor sys-

tems and provides a graphical representation of the

scene to the user. During operation the high-level task

is speci�ed from the graphical user interface. The task

planner and the path planner receive continuous up-

Tif

Tif

Task Planner

1

2
3

4

Path Planner Simulated Robot

Robot + Controller

Network Data Delivery Service

WMif

WMif

User-Interface

Rif

Rif

WMif

WMif

WMif

WMif

Rif

Rif

Rif

Rif

Tif

Tif

WMif

WMif

Figure 2. System Architecture

The overall system showing its �ve main modules. Each

module communicates using one or more of the three in-

terfaces: The World Model interface (WMif), the Robot

Interface (Rif) and the Task Interface (Tif). These

modules are physically distributed. The Network Data

Delivery Service plays the role of a bus providing the

necessary interconnections.

World Model information for objects

location object location in the global reference

frame.

grasps positions within the object where a

grasp is possible

properties Mass and inertia of a object, whether it

can be moved by the robots etc.

shape object shape for collision avoidance

purposes.

World Model information for robots

location robot location in the global reference

frame.

joint values value of each of the joint coordinates

joint limits limits on the joint coordinates

Denabbitt-

Hartenberg

Parameters

Description of robot kinematics

state Whether the robot is moving, grasping

an object etc.

Table 1. Information Available using the World-Model

interface

dates from the robot and sensors and produce prim-

itive robot-commands. The robot controller executes

these commands.

The simulator and the robot have the same inter-

face to the other modules. This allows the simulator

to masquerade as the robot for fast prototyping and

testing of the rest of the system.

A novel network-transparent, subscription-based

data-sharing scheme|the Network Data Delivery Ser-

vice (NDDS)|facilitates communication among the

di�erent modules. It allows them to be distributed

across di�erent workstations and provides the neces-

sary arbitration between data updates enabling mul-

tiple users to operate and monitor the system concur-

rently.

The NDDS system builds on the model of informa-

tion producers (sources) and consumers (sinks). Pro-

ducers register a set of data instances that they will

produce, unaware of prospective consumers and \pro-

duce" the data at their own discretion. Consumers

\subscribe" to updates of any data instances they re-

quire without concern for who is producing them. In

this sense the NDDS is a \subscription-based" model.

NDDS provides stateless (and hence robust) mecha-

nisms to resolve multiple-producer con
icts and sup-

ports multiple-rate consumers.

Using subscriptions allows us to drastically reduce

the overhead required by a client-server architecture.

Occasional subscription requests, at low bandwidth,

replace numerous high-bandwidth client requests. La-

tency is also reduced, as the outgoing request message

time is eliminated.

All modules in the system communicate using one of

the following three interfaces (built on top of NDDS):

The World Model interface, the Robot interface and

the Task interface. The functionality of two of these

interfaces is summarized in tables 1 and 2.

All modules in the system communicate using one of

the following three interfaces: The World Model inter-

face, the Robot interface and the Task interface. The

functionality of two of these interfaces is summarized

in tables 1 and 2.

This arrangement is analogous to a hardware bus

as illustrated in Figure 2. The Network Data Delivery

Service plays the role of the physical interconnections

and the three interfaces are similar to bus-access pro-

tocols.

This approach is key to reducing system integration

time and produces generic, reusable modules.

3. Controller

The robot system consists of two four degree-

of-freedom scara manipulators equipped with joint

torque sensors, joint encoders and an end-point 6-

axis force sensor. An overhead vision system pro-

vides global sensing. The robot is controlled from

a VME-based real-time computer system. The con-

troller enforces the Virtual Object Impedance Control

policy [6]. This control policy is implemented using a

four-layer control structure initially developed by [5].

This structure is shown in �gure 3. Figure 4 illustrates

the trajectory tracking performance of the system.

command meaning

move object Move an object that is being grasped.

This command will provide a via-

point collision-free path for the object.

The robot is controlled using object

impedance control.

move

arms (opera-

tional space)

Move the arms. This command as-

sumes the arms are not grasping an

object. The command provides a via-

point collision-free path for the arm-

endpoints.

move arms

(joint space)

Move the arms. This command as-

sumes the arms are not grasping an ob-

ject. The command provides a via-point

collision-free path for the arms joints

(This is provided to resolve kinematic

ambiguities).

grasp Grasp an object. This command speci-

�es the object to be grasped.

un-grasp Un-grasp an object.

Table 2. Commands available using the Robot inter-

face.

All real-time software has been developed using the

ControlShell framework [2]. ControlShell enables mod-

ular design and implementation of real-time software.

Its object-oriented tool-set provides a series of exe-

cution and data exchange mechanisms that capture

both data and temporal dependencies. This allows

a unique component-based approach to real-time soft-

ware generation and management. Speci�cally Con-

trolShell clearly de�nes temporal events, and provides

mechanisms for attaching routines to those events.

It provides data structure speci�cations, and mech-

anisms for binding data and routines while resolv-

ing data dependencies. ControlShell's event-driven �-

nite state machine provides the means to weave asyn-

chronous events into a sequential execution stream.

ControlShell also includes numerous code-generation

and maintenance tools such as the graphical compo-

nent editor, the �nite state machine editor, the data-

ow editor, the interactive menu facility etc. The

structure of ControlShell is summarized in �gure 5.

4. Planner

The automatic generation of robot paths for accom-

plishing a user speci�ed task is one of the key elements

in our automated robot system. Since we aim to build

such an interactive system, the on-line motion plan-

ning capability is crucial. Indeed, it is unacceptable

for a user to specify a task and then have to wait a

few minutes for the motion of the robots to be planned

Joint Torque Control
(Flexibility, Friction, Cogging)

End-Point Control
(Manipulator Motion and Forces)

Object Control
(Object Motions and Forces)

Task Control
(Get, Assemble)

Figure 3. Four-level control hierarchy for two-

armed robot.

We use a three layer hierarchy to control the two-armed

robot. At the lower joint level, we use joint-torque sen-

sors to compensate for the non-idealities of the motor

(cogging, non-linearity) and the joint dynamics induced

by the joint
exibility. On top the arm level control can

now assume ideal actuation (i.e. the motors deliver the

desired torque to the link itself) and use a Computed

Torque approach to compensate for the non-linear arm

dynamics. The third object layer, is concerned with

object behavior and assumes that the arms are virtual

multi-dimensional actuators that apply torques to the

object. The outer layer implements elementary tasks

such as object acquisition and release, insertions etc.

and executed. Due to the high computational cost of

robot motion planning [1, 7], we focus our e�ort on

developing e�ective strategies and e�cient path plan-

ning algorithms to achieve the on-line performance.

The planning system consists of two modules: the

Task Planner and the Path Planner. The task plan-

ner is responsible for determining how to utilize the

resources (in our case, two robot arms) to accomplish

the user speci�ed task. The result is a decomposition

of the problem into subtasks, which are then sent to

the path planner for �nding the necessary motion of

the robots.

4.1. Task Planner

The role of the task planner is to �rst determine how

to solve the user-speci�ed task (e.g. put object A at

location P), then make use of the path planning algo-

rithms to actually �nd the sequence of robot motions

to complete the task, and �nally to send the result to

the robots in terms of primitive commands (e.g. move

arm X along the trajectory, close the gripper of arm

Y).

The task is broken down into parts. Since it may in-

-120 -100 -80 -60 -40 -20 0 20 40
-120

-100

-80

-60

-40

-20

0

position along x (cm)

po
si

tio
n

al
on

g
y

 (
cm

)

Trajectory tracking performance: 2.5 second straigh-line slew

reference trajectory

actual trajectory

Figure 4. Trajectory tracking performance for

right arm.

Illustration of the tracking response of right arm. The

reference is a �fth trajectory for the arm endpoint com-

manding it to follow a 1.75 m straight line path in

2.5 sec. This trajectory requires accelerations of up to

4:3m=s
2 (close to 1=2g). The maximum tracking error

is 1.4 cm.

DFE

Data sets

CSMats

Data base Modules

Execution Lists

Dynamic lists

Configuration
Manager

Menus
Finite
State
Machines

VxWorks (Real-Time opearting system)

Application (components)ControlShell

NDDS

Sample
Habitats

Figure 5. ControlShell Structure.

The right side of the diagram denotes the \execution"

hierarchy; the left side is the \data" hierarchy. The ap-

plication, consisting partially of a set of reusable compo-

nents, has access to all facilities at every level. Control-

Shell provides a layer on top of the real-time operating

system VxWorks.

volve moving multiple objects to their speci�ed goals,

the task planner must determine which object to ma-

nipulate �rst. The criteria for choosing this object is

based on the expected time that it will take for the ob-

ject to leave the work cell. For example, static objects

have lower priorities than the objects on the conveyer

belt (i.e. objects on the conveyor belt will leave the

workcell sooner). Once the object to be manipulated

is identi�ed, an arm is selected to grab and deliver the

object. The criteria used to select the arm takes into

account which arm is free, which arm is closer to the

object, how long does the objects takes to leave the

workspace of each arm, etc. At this point, rather than

solving the complete manipulation path, that is mov-

ing the arm to grasp the object, grasping it, carrying it

to the goal, and then ungrasping it, the task planner

further divides the problem into two subtasks. The

�rst subtask is moving the arm to grasp the object,

while the second subtask is to deliver the object to its

goal.

The task planner runs in a loop and decides what

to plan according to the current state of the world.

For example, if there are objects in the workcell, the

task planner will detect this at the start of the loop

and will call the path planner to �nd a trajectory for

one of the arms to go and grasp the object with the

highest priority. In each loop only the subtask with

the highest priority is sent to the path planner. In the

event that the planner fails to solve the highest prior-

ity subtask, the subtask with the next highest priority

is sent to the path planner - it may be the same object

but this time using a di�erent arm. Once a trajectory

is found, it is sent to the robot for execution. After

the motion of the robot is detected, the task planner

returns to the top of the loop. In the event that the

execution of this subtask become questionable - be-

cause the obstacles have moved or the goal position

has been changed - the task planner will �rst deter-

mine if the path is still valid and if not it will replan

accordingly and send the new path to the robot.

4.2. Path Planner

The subtasks that are requested by the task planner

to be solved are the following. Note that a free arm

refers to a robot arm that is not committed to any

subtask.

� move one arm to grasp a static object while the

other arm is free,

� move one arm to grasp a static object while the

other arm is moving,

� move one arm to catch a moving object while the

other arm is free,

� move one arm to catch a moving object while the

other arm is moving,

� deliver the object that is grasped to its goal loca-

tion while the other arm is free,

� deliver the object that is grasped to its goal lo-

cation while the other arm is holding another ob-

ject.

Notice that we do not consider the case where both

arms deliver two independent objects at the same time

or the case where one arm is moving and the other

arm delivers its object to the goal. For these cases

we decouple the problem and plan the motion of the

arms sequentially. Our reasoning is that though the

robot execution time for this decoupled approach may

be slightly longer than if the arms moved simultane-

ously, the planning time to �nd the sequential motion

will be signi�cantly shorter than the time to �nd the

simultaneous motion of both arms. Indeed, e�ciency

is the key issue in on-line motion planning. We make

some assumptions to simplify the path planning prob-

lem associated to each subtask and build a library of

e�cient primitives to solve them.

In our scenario, reasonable simpli�cations can be

made to reduce the size of the search spaces implied

by each subtask, and thus reducing the time required

to solve them. Due to the fact that the �rst two links

of the SCARA-type arms move in a plane and our as-

sembly task only involves pick-and-place operations,

we simplify the motion planning problem in the three

dimensional workspace into a problem of two dimen-

sions. This assumes that when the end-e�ectors of the

arms are as high up as they can go, the arms can move

in an unrestricted manner above the obstacles in the

workspace. This reduces the search space of each arm

from three dimensions to two1. Once the arm(s) are

grasping an object, the size of the object is such that it

can collide with the obstacles in the workspace - that

is the arms are unable to lift the object above the ob-

stacles. The result is a three dimensional search space

which fortunately still presents little di�culty for fast

computation.

For each of the aforementioned search spaces, we

build a path planning primitive to �nd a collision-free

path connecting two con�gurations in the particular

search space. These primitives are extremely e�cient

and can �nd paths in a fraction of a second. Some

of them are based on existing algorithms [4, 3], while

the others are completely new. To each subtask we

then associate a strategy that utilizes these primitives

to solve it. For example, the subtask of moving one

arm to catch a moving object while the other arm is

free has the following strategy. First the path of the

moving arm to grasp the object is found while ignor-

ing the presence of the free arm. The second step is to

1
the complexity of motion planning grows exponentially with

the dimension of the search space

have the free arm comply with the motion of this mov-

ing arm. If the subtask is solved, the corresponding

motion of the robots is returned to the task planner.

Otherwise, the task planner is noti�ed that the par-

ticular subtask could not be solved.

Our experiments demonstrate that this planning ap-

proach yields on-line performance.

5. Current Status

We have completed the test-bed and performed several

assembly experiments with non-moving obstacles. We

are in the process of adding the conveyor and testing

the dynamic aspect of our planners.

References
[1] J.F. Canny. The Complexity of Robot Motion Plan-

ning. MIT Press, Cambridge, MA, 1988.

[2] Real-Time Innovations Inc. ControlShell A Real-Time

Software Framework User's Manual. 954 Aster, Sun-

nyvale, California 94086, 1st edition, November 1992.

[3] Y. Koga and J.C. Latombe. Experiments in dual-arm

manipulation planning. In IEEE International Confer-

ence on Robotics and Automation, Nice, France, May

1992.

[4] J.C. Latombe. Robot Motion Planning. Kluger Aca-

demic Publishers, Boston, MA, 1991.

[5] Lawrence E. Pfe�er. The Design and Control of a Two-

Armed, Cooperating, Flexible-Drivetrain Robot Sys-

tem. PhD thesis, Stanford University, Stanford, CA

94305, (December) 1993. To be published.

[6] S. Schneider and R. H. Cannon. Object impedance

control for cooperative manipulation: Theory and ex-

perimental results. IEEE Journal of Robotics and Au-

tomation, 8(3), June 1992. Paper number B90145.

[7] G. Wilfong. Motion planning in the presence of mov-

able obstacles. In 4th ACM Symp. of Computational

Geometry, pages 279{288, 1988.

