
 Int. J. Computer Applications in Technology, Vol. 29, No. 1, 2007

Copyright © 2007 Inderscience Enterprises Ltd.

37

Realising voice dialogue management in a
collaborative virtual environment

Chun-Feng Liao* and Tsai-Yen Li
Department of Computer Science,
National Chengchi University,
64, Sec. 2, Zhih-Nan Road,
Taipei, Taiwan 116, ROC
E-mail: try@nccu.edu.tw
E-mail: li@nccu.edu.tw
*Corresponding author

Abstract: The applications of 3D-virtual environments and Voice User Interface (VUI) on
personal computers have received significant attention in recent years. Since speech is
the most natural way of communication, incorporating VUI into virtual environments can
greatly enhance user interaction and immersiveness. Although there have been many
researches addressing the issue of integrating VUI and 3D-virtual environment, most of
the proposed solutions do not provide an effective mechanism for multiuser dialogue
management. The objective of this research is on providing a solution for integrated dialogue
management and realising such a mechanism in a collaborative Multi User Virtual
Environment (MUVE). We have designed a dialogue scripting language called eXtensible
Animation Markup Language – Voice Extension (XAML-V), based on the VoiceXML
standard, to address the issues of synchronisation with animation and dialogue management
for multiuser interaction. We have also realised such a language on a MUVE to evaluate the
effectiveness of this design.

Keywords: voice user interface; VUI; VoiceXML; dialogue management; multi-user virtual
environment; MUVE.

Reference to this paper should be made as follows: Liao, C-F. and Li, T-Y. (2007) ‘Realising
voice dialogue management in a collaborative virtual environment’, Int. J. Computer
Applications in Technology, Vol. 29, No. 1, pp.37–44.

Biographical notes: Chun-Feng Liao received his BS and MS from National Chengchi
University in 1998 and 2004, respectively. He is currently a PhD student in the Computer
Science and Information Engineering Department at National Taiwan University. His research
interests include Intelligent Systems and Context-Aware Middleware.

Tsai-Yen Li received his BS in 1986 from National Taiwan University, and MS and PhD in
1992 and 1995, respectively, from Stanford University. He is currently a Professor in the
Computer Science Department of National Chengchi University in Taiwan. His research
interests include Computer Animation, Intelligent User Interface, Motion Planning, Virtual
Environment, and Artificial Life.

1 Introduction

Due to the rapid development of graphics hardware and
software, virtual reality that used to run on high-end
graphics workstations can now be experienced on desktop
computers. Among the potential applications, Multi-User
Virtual Environment (MUVE) (or called Collaborative
Virtual Environment (CVE)) is one that allows many users
to share their experiences in a 3D-virtual environment
(Matijasevic, 1997). The nature of this type of system
requires tight integration of multimedia (especially 3D
graphics) and distributed system technologies. An example
application of this type of environment is the prevalent
3D-online games that have received significant attentions
in recent years. Other applications on military,
entertainment, education, etc. are also emerging (Apaydin,
2002; Wauchope et al., 2003).

Most MUVE systems today, such as DIVE
(Frecon and Stenius, 1998), MASSIVE (Greenhalgh and
Benford, 1995), Blaxxun (http://www.blaxxun.com) and
ActiveWorld (http://www.activeworlds.com), adopt a
multimodal user interface at least consisting of
3D-navigation and textual chatting. However, few of
them have incorporated Voice User Interface (VUI), the
most natural way of communication for human beings,
into their systems, despite the recent advances in
speech-related technologies. We think the main reasons are
twofold. Firstly, there exists no effective dialogue
management mechanism for multiple users across
the network in general. Most of the voice applications
today are simple two-party applications focusing on the
voice dialogues between a human and a machine playing
the role of the other party. Secondly, there is no
flexible way to integrate dialogue specifications

38 C-F. Liao and T-Y. Li

seamlessly into a computer-generated animation in the
current MUVE systems.

In this paper, we propose a dialogue management
mechanism that enables VUI in a MUVE. The mechanism
uses a protocol to let two avatars, representing either
human beings or machines, establish a dialogue
connection and allow other avatars in the virtual world to
observe the progress of the dialogue. The protocol is
realised with XML-based documents while the dialogue
itself is a form based on VoiceXML (http://www.w3.org/
Voice/). Due to the extensibility of XML, this dialogue
management mechanism is seamlessly integrated into a
MUVE system called Intelligent Media Network (IMNet)
(Li et al., 2005) that adopts eXtensible Animation Markup
Language (XAML) (Li et al., 2005) as the underlying
animation scripting language. The VUI is described with a
language called XAML – Voice Extension (XAML-V) and
embedded in an XAML script as a plug-in which can in
turn trigger additional animation scripts inside the
dialogue.

In Section 2, we will briefly review the related work in
MUVE and dialogue management. In Section 3, we will
describe the requirements of enabling voice dialogues in a
MUVE. The design of XAML-V for realising such a voice
interface will then be presented in the following section.
In Section 5, we will describe some implementation issues
and illustrate our design with an example dialogue
between two users and observed by other users. Finally,
we will conclude this paper with some future research
directions.

2 Related work

2.1 Scripting languages for MUVE

The application protocol for delivering multimodal
contents, such as 3D-animation and textual chat, has also
been an active research topic. A recent trend is on
designing an XML-based animation scripting language for
describing the activities in a virtual environment.
For example, Avatar Markup Language (AML)
(Kshirsagar et al., 2002) focuses on facial expression but
only provides limited functions for altering a canned
motion. STEP is another XML-based scripting language
that emphasises on its logical reasoning ability (Huang
et al., 2002). XAML is also an XML-based animation
scripting language featuring its extensibility in modelling
animations with various levels of controls and allowing
other external modules to be incorporated (Li et al., 2004).
In this work, we have chosen to extend XAML to
incorporate a mechanism for voice dialogue management
in the IMNet (Li et al., 2005) system.

2.2 Dialogue management

The researches for voice technologies, such as speech
synthesis, speech recognition and their applications have
made significant progresses in recent years. International
standards such as VoiceXML are emerging as the de facto
for dialogue-based applications. Most of these designs aim
to provide a VUI to a user by downloading a dialogue

script from a document server. However, since two-way
communications between a human being and a computer
are usually the basic assumption for designing such a
language, it cannot be directly applied to a MUVE system
without modifications.

Since multiple clients could be interacting with each
other at the same time in MUVE, the dialogue session
management mechanism is essential to prevent collisions
of dialogue requests and to ensure the quality of dialogue.
Among the dialogue session management protocols, H.323
(Packet-based multimedia communications systems,
http://www.itu.int/rec/recommendation.asp?type=folders&
lang=e&parent=T-REC-H.323.) or Session Initiation
Protocol (SIP) (http://www.ietf.org/html.charters/
sip-charter.html/) are two of the most important connection
management mechanisms today. H.323 was designed for
teleconferencing while SIP was designed for voice
applications based on Voice Over IP (VOIP) technologies.
The ideas of the session management control protocol used
in our system are similar to these two standards but the
message contents, protocol format and hosting
environments are all very different.

2.3 Integration of voice dialogue and
virtual environment

Galatea (Sagayama et al., 2003) is an Anthropomorphic
Spoken Dialogue Agent (ASDA) platform that makes use
of the dialogue model of VoiceXML. GalateaDM is one of
the modules on the platform for dialogue control.
It extends VoiceXML to incorporate animation
descriptions such as facial expression scripts. However, it
was not designed to be used in a MUVE and therefore has
not taken multiparty dialogue management into account.

In Nyberg et al. (2002), the authors argue that the
form-filling mechanism in VoiceXML is insufficient for
expressing state transitions in an advanced dialogue.
Therefore, a language called DialogXML is designed to
express a more complex dialogue. A dialogue manager is
also designed to translate the scripts in this language into
VoiceXML scripts at run time. Although, a high-level
language like DialogXML can facilitate designing a
dialogue with the low-level VoiceXML language, it also
comes with disadvantages. For example, translating the
scripts at run time in a MUVE may affect the system
performance and using state diagram to design a dialogue
without a good authoring tool may not be intuitive to
regular users.

Due to the complexity of system design, most voice
interfaces and virtual environment systems existing today
were developed independently. Therefore, some efforts
have to be made to facilitate the integration. For example,
Cernak and Sannier (2002) has used the CSLU toolkit to
facilitate the integration. The voice interface can
communicate with the virtual environment through the
CORBA mechanism. However, as the authors pointed out,
the efficiency of the overall system suffers under such a
distributed environment. In Descamps et al. (2001), the
authors use eXtensible Stylesheet Language Template
(XSLT)1 to translate Multimodal Presentation Markup
Language for VRML (MPML-VR) into Javascript and

 Realising voice dialogue management in a CVE 39

VRML. The voice interface module communicates with
the VRML browser via the External Authoring Interface
(EAI) provided by the VRML browser. A main
disadvantage of such an integration mechanism is that
most EAI available today can only support a specific
version of Java virtual machine and therefore limit the
extensibility of such an integration solution.

3 Dialogue management in MUVE

VoiceXML was originally designed for dialogues between
human being and system in a telephony environment.
A human user interacts with the system by retrieving a
sequence of dialogue forms from a document server just as
we do in a typical session of a web application. In such an
environment, there are at most two participants in a
dialogue session. However, in a typical MUVE, the
number of avatars in a scene is usually much larger. In a
dialogue session, two avatars are the active subjects while
the other avatars act as observers. In order to clarify the
roles of the avatars in a typical MUVE, we have adopted
the following notations.

Subjects: Avatars in a dialogue.

Observers: Avatars not in a dialogue.

U: Avatars controlled by human being.

S: Avatars controlled by system.

Suffix s: Subject avatars.

Suffix i (i = 1, 2, 3, …): Observer avatars.

For example, Us denotes an avatar in dialogue controlled
by a human user.

If we adopt the session management model of a typical
VoiceXML session between two avatars controlled by a
human (Us) and a machine (Ss), the dialogue may actually
happen between Us and the document server as shown in
Figure 1. After the dialogue is initialised, Ss sends its
dialogue script’s URL to Us (Figure 1, steps 1–2), and then
Us fetches the script according to this URL from the
document server and collects inputs from the user. A new
script is then fetched based on the user’s response
(Figure 1, steps 3–6).

Figure 1 Sequence diagram of applying the VoiceXML session
management model to a MUVE

When applying the VoiceXML dialogue model to a MUVE
as described above, one may encounter several problems.
Firstly, although Ss is in a dialogue session with Us, Ss is
not aware of the dialogue status after sending out the URL
of the first dialogue script. If some network failures occur
during the dialogue or Us deliberately stops the dialogue, Ss
will not be notified and updated. Secondly, without a
mechanism to maintain the dialogue status, Ss may
be talking to two or more avatars simultaneously or
showing a mixed and confused animation to a wrong
target. Therefore, we have proposed several mechanisms as
described below to enhance the original session
management model.

3.1 Proxy request

In order to make Ss be aware of the dialogue status when
talking with Us, we propose to use a proxy-request
mechanism as for a proxy server on WWW. In the
enhanced model, all requests of dialogue scripts must pass
through Ss as shown in Figure 2.

Figure 2 The sequence diagram of adopting the proxy-request
mechanism in a dialogue

In Figure 2, Ss is responsible for fetching the dialogue
scripts that are requested by Us (Figure 2, steps 1–2) and
then send these scripts to Us (Figure 2, steps 3–4).
To continue the dialogue, Us may request the next dialogue
script with some feed back information (e.g. answering
some question proposed by Ss). The information will
be sent back to Ss, then Ss fetches the scripts again and
continues the interaction loop until the dialogue ends.

With the proxy-request mechanism described above, Ss
will receive all messages sent by Us and thus be aware of
its dialogue status with Us. Therefore, Ss can detect and
recover from potential errors. Since the participants of a
dialogue are all aware of the dialogue status, the realisation
of many advanced dialogue management mechanisms such
as dialogue initiation and locking as described below then
become possible.

3.2 Dialogue initiation and locking

Another characteristic of a dialogue in a MUVE is that a
user can only dedicate to a dialogue session at one time.
From our daily experience, we know that the output voice
from one-to-many people is common but input voice from
many people to a person is unusual. For instance, when a

40 C-F. Liao and T-Y. Li

teacher is giving a lecture to her students, the voice is
one-to-many. When many students speak out for questions
at the same time, it is difficult for the teacher to understand
all the questions. Therefore, we think that for a valid
dialogue, the output from an avatar to others may have a
one-to-one or one-to-many relationship; but input from
others to the avatar should only allow one-to-one
relationship. To realise such a mechanism, we need to
design a dialogue initiation and locking process to
maintain dialogue states appropriately.

Before any clients can start their dialogues, they must
negotiate with the other dialogue partner to ensure that it is
not in a dialogue already. We have designed a negotiation
process as illustrated in Figure 3. This process is
semantically identical to the session establishment process
described in the SIP specification (http://www.ietf.org/
html.charters/sip-charter.html/). Despite the similarity,
since the protocol representation of our design is
XML-based and SIP adopts an ABNF-based syntax
format, the protocol syntax and implementation of our
system is different from the SIP standard.

Figure 3 The sequence dialogue for the dialogue
initiation process

To illustrate the dialogue session establishment process,
assume that Us intends to have a dialogue with Ss. Firstly,
Us has to confirm that it is not in a dialogue already with
other clients in order to start the initiation process. Us will
send an ‘invite’ message to Ss, and Ss immediately responds
with a ‘negotiating’ message (Step 1 in Figure 3).
Meanwhile, Us will enter the ‘dialogue negotiation’ state
(see Figure 4). If Ss is also not in a dialogue, it will enter
‘dialogue negotiation’ state as well and return a ‘dialogue
accept’ message (steps 5–6 in Figure 3) back to Us.
When Us receives this message, it will enter the ‘in
dialogue’ state and send back a ‘dialogue accept
acknowledgement’ message (steps 7–8 in Figure 3). Ss then
will also enter the ‘in dialogue’ state and fetch the first
dialogue script from the document server for Us
(steps 9–12 in Figure 3). On the other hand, if Ss is busy in
another dialogue already in step 4, it will send back a
‘dialogue reject’ message in step 5. When Us receives this
message or the process times out due to any abnormal
network problems, it will enter the ‘not in dialogue’ state
and abort the initiation process.

Figure 4 State diagram for dialogue initiation and locking

3.3 Dialogue message types

The dialogue initiation messages described above are sent
between the two engaging parties only. However, after the
dialogue session starts, different avatars in a MUVE
should receive different messages due to their
distinguished roles in the dialogue. For example, except
for the engaging avatars, the other avatars are observers of
the dialogue. They should receive the content of
the dialogue but should not participate or reply to any
of these dialogues. Therefore, two types of messages are
designed: dialogue scripts and broadcasting scripts.
The dialogue scripts are similar to a typical VoiceXML
dialogue form while the broadcasting scripts are like
a dialogue without questions. The dialogue scripts are
mandate and cannot be ignored while the broadcasting
scripts may be safely ignored by other avatars if necessary
according to the application. For example, if two pairs of
avatars converse in the virtual environment at the same
time, every avatars will receive the dialogue scripts from
its dialogue partner and the broadcasting scripts from
another pair. To be concentrated on their communication,
they can choose to ignore the incoming broadcasting
scripts. Although other types of messages can be extended,
the functions of dialogue interrupts and three-way
dialogues are not implemented in the current system
design.

4 Design of XAML-V

A scripting language called XAML-V, an extension of
XAML, is designed to realise the VUI and dialogue
management mechanism described in the previous section.
In this section, we will present the scripting language in
more details to illustrate how it takes advantage of the
extensibility of XAML to make the animation scripting
language speech-enabled. XAML-V mainly consists of
tags with two types of functions: dialogue context and
dialogue management protocol.

4.1 Dialogue context

XAML is an animation scripting language that allows
other modules, such as XAML-V, to be incorporated
as plug-ins. As shown in Figure 5, a XAML-V script is
enclosed in the <xaml-v> tag, which is embedded in an

 Realising voice dialogue management in a CVE 41

<AnimPlugin> tag. The dialogue context part of XAML-V
is based on a subset of VoiceXML with the telephony-
related elements removed since they are not appropriate in
MUVE. For example, the tags of <block>, <prompt>,
<form> and <field> all bear the same meanings as they are
in VoiceXML while <form>, <submit> and <field>
are redefined in XAML-V to achieve the new dialogue
management mechanisms. The telephony-related tags
such as the <transfer>, <filled> and <assign> tags are
removed.

Figure 5 XAML-V script as a plug-in of XAML

In addition to the VoiceXML-related tags, XAML-V also
supports embedded animations inside a dialogue at both
the form level and the field level. The embedded
animations are XAML scripts that do not recursively
include XAML-V scripts. For example, in Figure 6, a
form-level and a field-level animation that imports canned
motions from external files through the <AnimImport> tag
is used.

The XAML-V script example in Figure 6 describes a
scenario where a computer-controlled avatar welcomes the
user by a greeting statement ‘Good Morning, sir. May I
help you?’ Then the system asks the user where he/she is
interested in going while playing a high-level ‘listen’
animation clip at the same time to prompt the user for a
response. The response will then be sent to the
corresponding URL for further processing.

Figure 6 Embedding animation in a XAML-V script

4.2 Dialogue management protocol

Several tags are added to support the dialogue
management mechanism proposed in the previous section.
Figure 7 shows an example of dialogue negotiation
message. The ‘context’ attribute indicates the type of
dialogue negotiation being executed, and the ‘source’
attribute indicates where this message is from.

Figure 7 Dialogue request message

In Figure 7, the ‘context’ attribute is ‘request’ and the
‘source’ is ‘Us’. The script means that an avatar ‘Us’
would like to ‘request’ a conversion to the user.
The possible values for the ‘context’ attribute of the
dialogue-negotiation element include: request, accept,
reject, dialogAck and endDialog. Each of these values
maps to an action in a dialogue negotiation process
described in the previous section.

Figure 8 shows an example of the proxy-request
mechanism in XAML-V. The idea is to encapsulate HTTP
GET/POST messages in the <proxy-request> tag such
that the system-controlled avatar can fetch the next
document from the document server. In the <proxy-
request> element, the HTTP method, requesting URL and
requesting parameters are the sub elements to encapsulate
detail information.

Figure 8 An XAML-V script for proxy request

5 Implementation and example

5.1 Implementation

We have implemented the enhanced dialogue model with
XAML-V in IMNet (Li et al., 2004, 2005). The XAML-V
module serves as a plug-in component of the XAML
platform and coordinates with various input and output
devices. The XAML-V module interprets XAML-V script
and manages several dialogue mechanisms (e.g. dialogue
lock or dialogue state). A comparison of the
implementation of XAML with other speech-enabled

42 C-F. Liao and T-Y. Li

MUVE systems is summarised in Table 1. The main
differences are on the adopted script-based language
(XAML-V) for dialogue flow control and how it is realised
in the 3D-virtual environment.

Table 1 Comparison of implementation in various
MUVE’s with VUI

System Cernak
and
Sannier
(2002)

Wauchope
MSFT
(2003)

Wauchope
et al. ISFS
(2003)

XAML-V

Virtual
environment

VRAC’s
C6

EA’s
World
Toolkit

Cortona
VRML
Browser

IM-
Browser
(Li et al.,
2005)

Speech
recognition

CSLU
Toolkit

IBM
ViaVoice 8

IBM
ViaVoice 8

IBM
ViaVoice 9

SR
grammar

Home
made

IBM
SRCL

JSGF SRGF
(W3C
Standard)

SR
invocation

Keyword Not
mentioned

Push to
talk

Push to
talk

TTS Festival IBM
ViaVoice 8

IBM
ViaVoice 8

IBM
ViaVoice 9

Speech API Not
mentioned

IBM
SMAPI

JSAPI JSAPI w/
Cloud
Garden
Bridge

Speech-VR
bridge

TCP
Socket

TCP
Socket

UCP
Socket

TCP
Socket

Dialogue
flow control

SCI IDE Rule and
data stored
in RDBMS

Rule and
data stored
in RDBMS

XAML-V

Figure 9 shows the overall architecture of XAML-V
platform. The VoicePluginObject serves as a plug-in point
to XAML platform. It accepts scripts from the XAML
platform and delegate to a XAML-V interpreter. The
XAML-V interpreter is the core of the XAML-V platform,
which parses incoming scripts and orchestrates the
other components. ExecutionContext is the data store for
run-time configurations and information needed by the
interpreter. The dialogue document server is a repository
for dialogue scripts. These scripts may also be generated
dynamically using server-side scripting technologies. For
example, we use an open source Java Servlet container
(Tomcat 4.1) as the dialogue document server in our
implementation. The HttpClient fetches dialogue scripts
from the document server and handle HTTP protocol
details for the interpreter. Tag Handlers are collections of
classes conformed to a ‘TagHandler’ interface and each of
them is designed to handle a specific tag. The interpreter
delegates work to this component according to the tags
that it encounters. For example, it will delegate work to
PromptTagHandler class if the interpreter encounters a
<prompt> tag. In addition to rendering the voice with the
TTS module, the PromptTagHandler object will send out a
broadcasting message containing a <prompt> script to let
all other avatars render the voice as observers.

According to the plug-in model of XAML, when the
interpreter encounters the <AnimPlugin> element, it will
search a preconfigured component registry for a valid
plug-in to handle the script described inside the

<AnimPlugin> element. The XAML interpreter will
acquire the control of current executing thread and
delegate to a plug-in component when it finds one. Since
XAML-V is a plug-in component, the XAML-V
interpreter will take over the control of current thread and
continue to execute the script.

Figure 9 System architecture of XAML-V platform

To evaluate the effectiveness of the proposed mechanism,
we have built a prototype system for experiments. The
experiments consist of three client avatars, two controlled
by the human and one controlled by the computer. The
layout of the experimental environment is shown in
Figure 10. The IMNet clients exchange their messages via
the IMNet server implemented based on the OpenJMS2
running on a computer with Intel Pentium 4 1.6 GHz CPU
and 768 MB of memory. In order to generate dialogue
scripts according to the user’s response dynamically,
we have constructed the Document Server with the Apache
HTTP server and the Tomcat application server, which act
as the server-side script generator.

Figure 10 Experimental environment

5.2 An example

In Figure 11, we show the snapshots of the user interface
for an example of interactive animation with a voice
dialogue written in XAML and XAML-V. The example
dialogue script is similar to the one shown in Figure 6.
In the scenario, a virtual character acts as a receptionist via
the VUI when a real user enters the virtual environment.
The client application will start dialogue negotiation by
issuing a dialogue request to the receptionist’s client and
entering the ‘dialogue negotiation’ state (see Figure 4 and

 Realising voice dialogue management in a CVE 43

steps 1–4 in Figure 3). In this scenario, we assume the
receptionist is not having a dialogue with another avatar,
so the user’s client will receive a ‘dialogue accept’
message and enter the ‘in dialogue’ state (see Figure 4 and
steps 5–6 in Figure 3). After the script is fetched and sent
to user’s client (steps 9–12 in Figure 3), the XAML-V
interpreter will start playing this script on the user’s client
machine.

Figure 11 Snapshots of the interface for an example
dialogue in a MUVE

The receptionist greets the guest by saying “Good
morning, Sir, May I help you?” (Figure 11(a)) Then she
will listen to the user’s input for the destination that he/she
is interested in and play a high-level animation “listening”
at the same time (Figure 11(b)). If the user does not need
any assistance, the receptionist will end the dialogue by
saying “Good-Bye” (Figure 11(f)). If the user specifies one
of the destinations that the receptionist knows, she will
guide the user to the destination (Figure 11(c)). Unless the
user says “No, thanks”, the receptionist will continue to
ask the user for further question (Figures 11(d) and (e)).
Note that the receptionist’s reaction to the user’s utterance
is decided by posting (HTTP POST) the speech
recognition results back to the document server. In Figure
6, the “next” attribute of <xaml-v:submit> tag is used for
this purpose.

Figure 12 shows two snapshots (corresponding to (b)
and (c) in Figure 11) of the dialogue from the observer’s
view. The avatar with blonde hair is the observer of this
dialogue. She can hear all speech voices of the dialogue, or
may choose to ignore these voices safely if she would like
to have a dialogue with another avatar or if she is too far
away from them according to the specific definition of the
application.

Figure 12 Snapshots (b and c) of the above dialogue from an
observer’s viewpoint

5.3 Experiments and evaluation

We evaluate the functional correctness of the implemented
system by testing the pre-defined scenario in Section 5.2
with the following three different use cases:3

• Use case 1: human–computer interaction with text
input and speech output interface. A user
communicates by typing with the computer that
responds with voice dialogues.

• Use case 2: human–computer interaction with speech
input and speech output interface. A user
communicates directly with the computer by speaking
to the computer that understands a limited amount of
vocabulary.

• Use case 3: human–human interaction with text input
and speech output interface. A user communicates
with another user by typing while the responses are all
through voice interfaces.

We have also developed a Message Monitor, as shown in
Figure 13, to intercept and log all messages passing
through the IMNet server and to ensure that each
interaction among clients generates correct XAML-V
messages. Our experiments show that the IMNet server
can process 1200 messages per second on the current
experimental platform. If the server is overloaded, message
delivery will be ignored until the traffic congestion is
relieved. Although the current implementation only allows
two parties to speak to each other in a dialogue, there
could be many other clients listening to the dialogue. The
maximal number of clients supported will depend on
number of concurrent dialogues and the number of
participants (active parties or audience) in each dialogue.

Figure 13 The message monitor

44 C-F. Liao and T-Y. Li

6 Conclusions and future work

In this paper, we have proposed to enhance MUVE with a
VUI. We have presented a dialogue management
mechanism for MUVE based on VoiceXML and XAML.
The proposed XAML-V dialogue scripting language
includes functions on dialogue lock, dialogue
broadcasting, dialogue negotiation, and a proxy-request
mechanism. We have demonstrated the appropriateness of
this design by examples and shown that by integrating with
an appropriate voice interface, users can communicate
with each other in a more natural way in MUVE.

We have been focusing on realising the dialogue
management mechanism for MUVE; however, many
desirable features still need to be added to enhance the
immersion of the virtual environment. For example, the
volume of the voice dialogue as well as other 3D
sound effects should be adjustable according to the
relative spatial locations between avatars. In addition, a
more attractive facial animation synchronised with the
voice dialogue should be adopted to enhance visual
realism. We also would like to extend the dialogue model
to allow interrupts and dialogues with several participants
at the same time.

References

Apaydin, O. (2002) ‘Networked humanoid animation driven by
human voice using extensible 3D (X3D), H-Anim and Java
speech open standards’, Master’s Thesis, Naval Postgraduate
School.

Cernak, M. and Sannier, A. (2002) ‘Command speech interface to
virtual reality applications’, Technical Report, Virtual
Reality Applications Center at Iowa State University of
Science and Technology.

Descamps, S., Prendinger, H. and Ishizuka, M. (2001)
‘A multimodal presentation mark-up language for enhanced
affective presentation’, Proceedings of the International
Conference on Intelligent Multimedia and Distant
Education (ICIMADE-01), Advances in Educational
Technologies: Multimedia, WWW and Distance Education,
pp.9–16.

Frecon, E. and Stenius, M. (1998) ‘DIVE: a scalable network
architecture for distributed virtual environments’,
Distributed Systems Engineering Journal (special issue on
Distributed Virtual Environments), Vol. 5, No. 3, pp.91–100.

Greenhalgh, C. and Benford, S. (1995) ‘MASSIVE: a
collaborative virtual environment for teleconferencing’,
ACM Transactions on CHI, Vol. 2, pp.239–261.

Huang, Z., Eliens, A. and Visser, C. (2002) ‘STEP: a scripting
language for embodied agents’, Proceedings of the
Workshop on Lifelike Animated Agents.

Kshirsagar, S., Guye-Vuilleme, A. and Kamyab, K. (2002)
‘Avatar markup language’, Proceedings of Eighth
Eurographics Workshop on Virtual Environments,
pp.169–177.

Li, T.Y., Liao, M.Y. and Liao, J.F. (2004) ‘An extensible
scripting language for interactive animation in a
speech-enabled virtual environment’, Proceedings of the
IEEE International Conference on Multimedia and Expo
(ICME2004), Taipei, Taiwan.

Li, T.Y., Liao, M.Y. and Tao, P.C. (2005) ‘IMNET: an
experimental testbed for extensible multi-user virtual
environment systems’, in O. Gervasi et al. (Eds). ICCSA
2005, LNCS 3480, Springer-Verlag Berlin Heidelberg,
pp.957–966.

Matijasevic, M. (1997) ‘A review of networked multi-user virtual
environment’, Available at: http://citeseer.nj.nec.com/
matijasevic97review.html.

Nyberg, E., Mitamura, T., Placeway, P., Duggan, M. and
Hataoka, N. (2002) ‘DialogXML: extending VoiceXML for
dynamic dialog management’, Proceedings of the Human
Language Technology Conference.

Sagayama, S., et al. (2003) ‘Galatea: an anthropomorphic spoken
dialogue agent toolkit’, IPSJ SIG-SLP.

Wauchope, K. (2003) ‘Interactive ship familiarization system:
technical description’, AIC Technical Report AIC-03-001,
Navy Center for Applied Research in Artificial Intelligence,
Washington, DC.

Wauchope, K., Everett, S., Tate, D. and Maney, T. (2003)
‘Speech-interactive virtual environments for ship
familiarization’, Proceedings of Second International Euro
Conference on Computer and IT Applications in the
Maritime Industries (COMPIT '03), Hamburg, Germany,
pp.70–83.

Notes
1Available at: http://www.w3.org/TR/xslt.
2Available at: http://openjms.sourceforge.net/.
3The video clips for the experiments of these use cases can be

downloaded online at: http://www.try.idv.tw/research/.

