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Abstract—Enabling a humanoid robot to move autonomously 
in a real-life environment presents a challenging problem. Unlike 
traditional wheeled robots, legged robots such as humanoid ro-
bots have advanced abilities of stepping over an object or striding 
over a deep gap with versatile locomotions. However, only few 
humanoid researches today have addressed this problem. In this 
paper, we consider the problem of planning a humanoid robot’s 
motion in a layered environment cluttered with obstacles and 
deep narrow gaps. We extend the motion planning system for 
humanoids in our previous work to account for multiple locomo-
tions and striding ability for a humanoid robot. Each locomotion 
corresponds to a tier in the search space, and the tiers are con-
nected at the locations where motion transitions are possible. 
According to a humanoid’s geometric properties, such as maxi-
mal gait size and step height, we propose to apply the Closing 
morphological operator to the workspace bitmap to compute the 
reachability region for a humanoid with the striding ability. Our 
experiments show that our system is efficient in generating versa-
tile motions for a humanoid to reach its goal in a complex envi-
ronment. 

Keywords- Motion Planning, Humanoid Robot, Versatile 
Locomotions, Computer Animation. 

I.  INTRODUCTION  
Humanoid research has attracted much attention in recent 

years. Appealing humanoid robots have been designed in sev-
eral research projects. However, it remains a great challenge 
to make humanoid robots move autonomously. Motion plan-
ning is one of the key capabilities that an autonomous robot 
should have. It is an even more interesting problem for hu-
manoid robots since locomotion capability possessed by a 
humanoid robot is usually much better than other mobile ro-
bots. Like a human, a humanoid robot should be able to step 
upstairs or downstairs and stride over small obstacles or a thin 
deep gap. In addition, a humanoid robot should be able to 
change its locomotion according to the environmental con-
straints in order to avoid obstacles or pass through narrow 
passages. Similar needs for the planning capability also arise 
in the domain of computer animation in generating motions 
for autonomous characters.  

In our previous work, we have been able to plan efficient 
humanoid walk motions in a layered environment. The ap-
proach used in the planner decomposes the planning problem 
into global and local planning such that each subproblem is 
easier to solve. The global planner assumes some basic prop-

erties of a humanoid and uses an approximated geometric 
shape to define the path planning problem. The path generated 
by the global planner is passed to the local planner to realize 
the path with appropriate walk motions. However, in our pre-
vious work, a humanoid’s locomotion is limited to forward 
walking only, and a humanoid cannot pass a deep gap even if 
it can stride over it. In this paper, we will extend the work to 
overcome the above two limitations and present an efficient 
implementation of the planner in terms of space and time such 
that it can be used in an on-line manner.  

The rest of the paper will be organized as follows. In the 
next section, we will review the researches pertaining to our 
work. In the third section, we will give a brief description of 
the problem we consider in this paper. In the fourth section, 
we will present the planning algorithm that we propose in the 
paper. In the fifth section, some implementation details and 
experimental results will be presented. In the last section, we 
will conclude the paper with some future work.  

II. RELATED WORK 
Motion planning problems have been studied for more 

than three decades. An overview of motion planning algo-
rithms can be founding in Latombe’s book [9]. The researches 
pertaining to humanoid motion planning or simulation can be 
found in fields of robotics and computer animation [8][11][13]. 
These researches differ mainly on the way they perform the 
global path planning and how the locomotion is taken into 
account. For example, early work in computer animation fo-
cused on generating human walking motion to achieve a high-
level goal [1]. However, no planning is done to generate the 
global path automatically. Since the application is mainly for 
computer graphics, how to simulate human walking with real-
istic looking is the main concern [13]. A dynamic filtering 
algorithm is proposed in [14] to ensure that the generated mo-
tions can be transformed into a dynamically feasible one.  

In [6], a gross motion planner utilizing graphics hardware 
has been proposed to generate humanoid body motion on a flat 
ground in real time. Captured locomotion is used in this case 
to move the humanoid along the generated global path. In [5], 
a stochastic search approach with versatile locomotion has 
been proposed to generate humanoid motions in an unstruc-
tured environment where a set of predefined grasp points 
serve as contact constraints. In [3], sequences of valid foot-
prints are searched through augmented probabilistic roadmap 
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with a posture transition graph, and then each pairs of foot-
prints are substituted by corresponding motion clips. Since the 
motion clips are captured in advance, the locomotion may not 
be flexibly adapted to uneven terrain to avoid collisions. In 
[12], a multi-layer grid is used to represent the configuration 
space for a humanoid with different locomotion such as walk-
ing and crawling and the humanoid may change its posture 
along a global path. In [7] and [8], a humanoid robot with real-
time vision and collision detection abilities is presented. The 
robot can plan its footsteps amongst obstacles but cannot step 
onto them. Considering locomotion directly in global path 
planning may generate more complete result but, on the other 
hand, it limits the flexibility of locomotion. A recent work that 
can plan efficient humanoid motions in real time with a given 
general description of the objects in the workspace has been 
proposed in [10]. A more detailed description of this approach 
will be given in the next two sections.  

III. PROBLEM DESCRIPTION 
The inputs to a typical motion planner for a humanoid ro-

bot include the initial and goal configurations of the robot, the 
kinematics description and locomotion abilities of the robot, 
and a geometric description of objects in the environment. In 
our approach, the planning problem can be decomposed into 
two subproblems: the global motion planning for moving the 
body trunk of a humanoid and the local motion planning for 
realizing the global motion plan with appropriate locomotion. 
The planners at the two levels can be linked together to solve 
the problem in sequence as well as to feed back failure situa-

tion for further replanning as shown in Fig. 1. The global mo-
tion planning will be the main concern of this paper.  

A. Modeling the Environment 
We assume that we are given geometric description of the 

objects in the workspace such as the one shown in Fig. 2. Each 
object is given with a height and an offset from a reference 
level (such as the ground) in addition to its polygonal descrip-
tion. According to this geometric description, one can discre-
tize the workspace into a grid of cells with an appropriate 
resolution. The resolution is chosen such that the area of a cell 
can allow a foot of the humanoid to step onto. Each cell in the 
workspace is given an offset value representing the distance 
from an object’s bottom to some referenced ground. Each cell 
is also assigned a height value above the offset. According to 
the objects’ offset values, we separate the 3D workspace into 
multiple connected 2D layers. Note that in a layered environ-
ment a point in the horizontal plane may have different offset 
and height values on different layers. 

B. Modeling the Humanoid 
The kinematic description of a humanoid robot includes 

the maximal gait size, step height, and the bounding cylinder 
for each type of locomotion that the robot can adopt. Unlike 
traditional motion planning problems where the obstacles are 
given explicitly, the definition of obstacles in our case de-
pends on the humanoid’s kinematic properties as well as the 
objects’ geometry. For example, an object is an obstacle to a 
humanoid only if there is no way for the humanoid to step 
onto or pass under the object for a given locomotion due to the 
humanoid’s height and leg length.  

In global motion planning for a humanoid, we assume 
that the humanoid can be modeled as a bounding cylinder to 
simplifying collision detection. In our system, we uses a large 
and a small cylinders to model a humanoid in frontal and lat-
eral walking, respectively, as shown in Fig. 3. The radius of 
the inner cylinder is the size of the minimal region for a stable 
stance. The radius of the outer cylinder is determined accord-
ing to the locomotion. We use the largest lateral width or-
thogonal to the humanoid’s moving direction to determine the 
radius. For example, the cylinder used to plan the side-walk 
motion is smaller than the one for regular walking motion. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Planning loop for a typical query of humanoid motion.  
Fig.3. Frontal and lateral walking model for the humanoid. 

 
Fig.2. Example of a layered virtual environment with deep nar-

row gaps (colored columns between two large platforms) 
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The heights of both cylinders are also related to the human-
oid’s height and locomotions. If we allow the humanoid to 
bend its upper body during the walking cycle, the actual 
height may be lower than the humanoid’s height. When using 
cylinders to model the geometry of a humanoid, we are actu-
ally ignoring its orientation at the planning time. We can re-
cover the orientation of a humanoid in a postprocessig step 
according to the locomotion used.  

We assume that a humanoid robot can perform several lo-
comotions and choose the most appropriate one according to 
the environment. Although we can consider several major 
locomotions, such as walking, crawling, jumping and climbing 
in the local motion planner in order to generate a collision-free 
motion for the humanoid figures, only forward and side walk-
ing motions will be demonstrated in this work. In addition, we 
assume that the local planner can generate the motion transi-
tion from one type of locomotion to another at a given con-
figuration.  

IV. MOTION PLANNING FOR HUMANOIDS 
As described in the previous section, we use a decoupled 

approach to reduce the complexity of motion planning prob-
lem. In this section, we will focus on addressing the global 
path planning problem for a humanoid with multiple locomo-
tions and striding abilities. We will first describe how we pre-
pare the search space with the given environmental description 
and a humanoid’s data. Then we will present the planning 
algorithm that is used to search for a feasible path with these 
new abilities.  

A. Reachable Regions 
The reachable region for a humanoid in the workspace is 

affected by several factors. For walking motion, we need to 
take the humanoid’s maximal gait size and leg length into 
consideration as well as the bounding cylinder’s height. In our 
previous work, we use neighboring cells’ height difference 
and the humanoid’s leg length to decide the reachable regions 
in each layer. The height difference between two neighboring 
layers is also checked to ensure that a humanoid can pass 
through under the constraint of the layers above the current 
one. However, for an environment with deep narrow gaps 
such as the one shown in Fig. 2, large height differences be-
tween neighboring cells prevent a humanoid to move across 
the region occupied by the columns. The main difficulty 
comes from the fact that we only check the neighbors that are 
one cell away although the humanoid’s maximal gait size 
could occupy several cells.  

A straightforward approach will be extending the search 
algorithm to visit all the neighbors that are d cells away from 
the current configuration and take the legal ones for further 
processing. An obvious drawback of this approach is that the 
number of neighbors increases rapidly as the gait size in-
creases. The planning time will suffer as the number of visited 
cells soars. In addition, if we do not have a good idea about 
the reachable region, it would be difficult to compute an effec-
tive potential field to guild the search.  

In this paper, we propose a method to compute the reach-
ability region from a given configuration. This method can 

accounts for the striding ability of a humanoid to handle dis-
continuous regions. The idea is that we can connect together 
the separated regions within gait range by using the “Closing” 
operator, an important morphological operator in image proc-
essing [4]. Closing tends to smooth sections of the image. It 
generally fuses narrow breaks and long thin gulfs, eliminates 
small holes, and fills gaps in the image. Closing of set A by a 
structuring element B, denoted A•B, is defined as:  

BBABA Θ⊕=• )( . 
The equation, in words, says that the closing of A by B is sim-
ply the dilation of A by B, followed by the erosion of the result 
by B. The height map is A in our case, and we select the circle 
with a radius of half of gait size as the structuring element B. 
The dilation operation ( BA⊕ ) will extend the edge of ob-
jects in bitmap by 1/2 gait size, which fills small gaps or holes 
between two disconnect regions if these regions are near. Af-
ter dilation, the resulting bitmap shows that two regions are 
connected if their distance is within one foot step (See Fig. 
4(b)). But for the extended edges which do not connect to 
other regions, we apply erosion ( BAΘ ) to eliminate these 
useless edges. The erosion operation will corrode the edges in 
bitmap by 1/2 gait size, which dose not break the connected 
regions. Fig. 4(c) shows the result after erosion. Note that the 
unnecessary edges are removed after the operation and the 
map gets back to its original shape as in Fig. 2(a) except for 
connected discontinuous small regions. 

 
 (a) (b)  

 
 (c)   (d) 

Fig.4. (a) height map for the environment in Fig. 2., (b) map in 
(a) after applying dilation, (c) map in (b) after applying erosion. 
After the closing operator, the columns in the discontinuous 
region are connected. (d) instability map  



We use the height map after the closing operation to de-
termine each cell’s reachability. A cell is considered an obsta-
cle cell if and only if there are no ways to reach the cell from 
its neighbors under the height constraint. Given an initial con-
figuration of the humanoid, we can compute a map, called 
reachability map, where obstacle regions are composed of the 
cells that cannot be reached. This map can be computed by a 
wave propagation algorithm such as the one used to construct 
NF1 potential field [9]. The only difference is that we advance 
to a cell only if the height difference is less than the human-
oid’s leg length. 

B. Collision Map 
We can convert the height map, built in the workspace, 

into its corresponding C-space by growing the obstacle re-
gions with the bounding cylinder’s radius of the humanoid for 
a given locomotion. We need to identify the regions where 
unstable situation might occur if a humanoid stays there for 
too long. A map describing the regions is called instability 
map (see Fig.4(d) for an example). A cell in the instability 
map is defined as unstable if and only if the region covered by 
the enclosing circle of a humanoid contains cells with differ-
ent heights and this height difference is smaller than the hu-
manoid’s step height. Otherwise, if this region contains an 
object whose height difference is larger than humanoid’s step 
height, we call the cell a forbidden cell. A cell is defined as 
gap if and only if the region in height map is reachable after 
the closing operation. A humanoid can enter the unstable or 
gap regions for trespassing purpose but the transition time 
usually needs to be short. Therefore, we have set an upper 
bound for each type of region to prevent the humanoid from 
staying in these regions for too long.  

C. Path Planning Algorithm 
The planning algorithm that we used to compute the hu-

manoid motion is shown Fig. 5. The STABLE_BFP algorithm 
is similar to the classical Best-First Planning algorithm that is 
used to solve path-planning problems with low DOF’s[2]. In 
each iteration of the search loop, we use the FIRST operation 
to select the most promising configuration q from the list of 

candidates (OPEN) for further exploration. We visit each 
neighbor q’ of q, check their validity (via the LEGAL opera-
tion) and maintain their stability (through STABLE operation) 
for further consideration. The number of neighbors is related 
to the number of major locomotions, n. That is, if we visited m 
neighbors for each locomotion, we have to visited m*n 
neighbors in each iteration. The procedures for checking sta-
bility and legality are shown in Fig. 6. A configuration is legal 
if it is collision-free, marked unvisited, and temporarily stable. 
It is temporarily stable if and only if the humanoid has not 
entered the unstable region or gap region longer than some 
specified value. This duration is kept as an instability counter 
(q’.cnt) in each cell in the unstable region and step counter 
(q’.step) in the gap region when we propagate nodes into it. 
Note that the validity of a configuration in the unstable or gap 
regions depends on the counter of its parent configuration. If 
there are more than one possible parent configurations, we 
cannot exclude any of them. Therefore, in the STABLE_BFP 
algorithm, we do not mark a configuration visited if it is in the 
unstable or gap region. A configuration in these regions can be 
visited multiple times as long as the counter does not exceed 
the maximal bound. In a gap region, we need to check the gap 
width with the gait size. We keep the start point of a gap 
(gap_begin) when we first enter the gap region and the end 
point of a gap (gap_end) when a stable region is reached. 
These two points are used to count the gap width, and the pro-
cedure is to ensure that the gap does not exceed the gait size 
and the humanoid can stride from gap_begin to gap_end. 

In the STABLE_BFP algorithm, we use the FIRST opera-
tion to select the most promising configuration for further ex-

STABLE_BFP() 
1 install qi in T; 
2 INSERT(qi, OPEN); mark qi visited; 
3 SUCCESS ← false; 
4 while ┐EMPTY(OPEN) and ┐SUCCESS do 
5  q←FIRST(OPEN); 
6  for every neighbor q’ of q in the grid do 
7    if q’ is stable then 
8     mark q’ visited; 
9    if LEGAL(q’, q) then 
10    install q’ in T with a pointer toward q; 
11    INSERT(q’, OPEN);  
12    if q’ = qg then SUCCESS ← true; 
13 if SUCCESS then 
14  return the backtracked feasible path 
15 else return failure; 

Fig.5. The STABLE_BFP algorithm 

STABLE (q’ ,q) 
 if q’ is unstable then 
  q’.cnt= q.cnt+1; 
 else if q’ is gap then 
  if q.ingap then 
   q’.step= q.step+1; 
  else  
   q’.step=1; 
   q’.ingap=true; 
   gap_begin= q; 
 else if q’ is stable and q.ingap then 
  gap_end= q’; 

 
LEGAL (q’ ,q) 
 STABLE(q’ ,q) 
 if q’ is visited or forbidden then 
  return false; 
 if q’ is gap and q’.step>N then 
  return false; 
 if q’ is unstable and q’.cnt>M then 
  return false; 
 if q’ is stable and q.ingap then 
  check distance between gap_begin and gap_end;  
  if the distance is large than gait size, then  
   return false; 
 return true; 

Fig. 6. The STABLE and LEGAL procedures 



ploration. In the case of the BFP planners, the artificial poten-
tial field is usually the only index for the goodness criterium. 
Planners with this approach can usually yield short paths. In 
our case, the height difference could be an important index as 
well since one may prefer climbing up or stepping down stairs 
to taking a longer path. Preference on each available locomo-
tion is also an important factor. For example, generally speak-
ing, we prefer walking to crawling. Therefore, in the FIRST 
operation, we use a linear combination of these criteria, whose 
weights are specified by the user. In general, unstable regions 
and gap regions have lower preference, and staying in these 
regions is not preferred. Therefore, we use instability (q.cnt) 
or step counter (q.step) as a penalty measurement to avoid 
motions over difficult area whenever possible.  

V. IMPLEMENTION AND EXPERIMENTS 
We have implemented the global and local motion plan-

ners in Java and connected the planners to a VRML browser 
to display the final simulation results. All the planning times 
reported below are taken from experiments run on a regular 
1.6GHz PC. The size of the workspace is 25.6m x 25.6m, and 
the height and gait size of the humanoid is 180cm and 60cm, 
respectively. The width of the shoulder (for enclosing cylinder) 
and the foot length is 60cm and 37cm, respectively. The reso-
lutions for the grid workspace and configuration space are all 
256x256 in the global planner. In the following subsection, we 
will describe how to optimize storage space by merging sev-
eral layers with sparse objects in them to fewer layers. We will 
also use an example to demonstrate the ability and efficiency 
of the planner in later subsections. 

A. Merging Layers with Sparse Objects 
In our system we use an object’s offset value to separate 

the workspace into several 2D grid layers. However, for work-

space like gyratory stairs, such as the one shown in Figure 7, 
each stair may have a unique offset value, and we need a layer 
for each offset. The result is that each of the layered maps 
only contains sparse objects. As the number of layers in-
creases, not only the storage space will increase, but the search 
performance will degrade as well. In our implementation, we 
first sort the objects in workspace by their offsets in ascending 
order. Then we add objects into the first layer one by one until 
an object overlapped with other objects in this layer. A new 
layer is then created on demand. After this process, each ob-
ject is assigned to a specified layer, and the resulting number 
of merged layers is usually much smaller. Fig.7. is the exam-
ple of gyratory stairs, which need 25 layers if we use offsets to 
separate the workspace directly. If we use the merge approach 
mentioned above, only two layers are needed to represent the 
workspace. 

  
 (a) (b) 

  
 (c) (d) 

Fig.7. Merging sparse layers. (a) and (b) are the 3D workspace 
with spiral stairs from different views (c) and (d) are the merged 
results for layer 1 and layer 2, respectively. 

 
 (a) (b) 

 
  (c)   (d) 

 
  (e)   (f) 

Fig.8. (a) the C-obstacles for forward walking and (b) side walk-
ing. (c) the search result of the global path planner on layer 1 
and (d) layer 2, (e) passing the narrow passage with side-walk 
motion, (c) feasible local motions generated to walk across the 
columns.  



B. Example 
In Fig.8, we use an example to illustrate the feature of this 

planning system. The environment, which is the same as the 
one in Fig. 2, consists of two layers of objects with various 
sizes and heights scattered into two main platforms, connected 
by several marble columns of various heights. Our previous 
planner was not able to generate a path across these columns 
because of the deep gaps amongst them. In addition, note that 
the passage on the left platform is too narrow for the human-
oid to walk through without switching to the side-walk loco-
motion. The C-obstacles (configuration space obstacles) with 
different bounding cylinders for forward walking and side 
walking are shown in Fig. 8 (a) and (b), respectively. Note that 
the narrow passage exists only when side-walk locomotion 
(Fig. 8. (b)) is used. The global path found by the planner is 
shown in Fig. 8 (c) and (d). In this example, the initial con-
figuration is on the ground, and the goal is at some location on 
the second layer that is reachable only through the following 
passages: climbing upstairs to the left platform, changing lo-
comotion to side walk to pass the narrow passage, crossing the 
columns to the right platform, and climbing upstairs again to 
the second layer on the right platform. The planning time for a 
typical run consists of two parts: preprocessing and search. In 
this example, the total preprocessing time is 251ms (construct-
ing layer map takes 10ms, computing the reachable region 
takes 35ms, computing the potential field takes 74ms, and 
computing the instability map takes 132ms) and the search 
time is 15ms.  

C. Planning Performance Compare to Traditional Approach 
As mentioned in previous section, traditional straightfor-

ward search algorithms may also be able to find paths with the 
striding ability by extending neighbor search range. Compare 
to this traditional approach, our approach is superior in per-
formance and extensibility. Assume that a normal walking gait 
size is 60cm, which is equal to 6 cells in search space with the 
current resolution. In the traditional approach, the number of 
neighbors that needs to be covered is 64 for each configuration. 
This number could be even larger if we allow the humanoid to 
have a larger gait size or if we use finer resolution for the 
search space. The search time for an example similar to the 
one shown in Fig.8 is 1246ms with the traditional approach 
where 64 neighbors are visited at a time and totally 47952 
nodes are visited. With our approach, the preprocessing takes 
263ms, and the search takes only 34ms. The total number of 
visited nodes is 2612. In other words, the proposed planning 
approach is faster than the traditional approach by about an 
order of magnitude. In addition to the reduced number of vis-
ited neighbors, the new approach is fast also because the po-
tential field computed with a correct reachability map is more 
effective. The traditional approach can only use the distance to 
the goal as a heuristic since the reachability region is discon-
tinuous. 

VI. CONCLUSIONS AND FUTURE WORK 
Motion planning is one of the key abilities that an 

autonomous agent should have in the context of humanoid 
robot and animation character. Although previous work has 

made great process in generating humanoid motions automati-
cally in layered environments and uneven terrain, the motions 
are still limited by the capabilities of the humanoid such as the 
available locomotions and striding. In this paper, we have suc-
cessfully extended the planning system to consider such abili-
ties and demonstrated the efficiency and effectiveness of the 
planner by simulation examples. In the future, we would like 
to enable the humanoid robot with more locomotion abilities 
such that it can have more motion choices in moving the robot 
to the goal. In addition, although the decoupled approach in 
our system is efficient, there must exist counterexamples 
where the local planner cannot realize the path found by the 
global planner. Therefore, we will also work on effective re-
planning algorithms by taking the feedback of the local plan-
ner into account.  
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