
Planning Humanoid Motions with Striding Ability
in a Virtual Environment

Tsai-Yen Li Pei-Zhi Huang
Computer Science Department Computer Science Department
National Chengchi University, National Chengchi University,

Taipei, Taiwan, R.O.C. Taipei, Taiwan, R.O.C.
li@nccu.edu.tw g9102@cs.nccu.edu.tw

Abstract—Enabling a humanoid robot to move autonomously
in a real-life environment presents a challenging problem. Unlike
traditional wheeled robots, legged robots such as humanoid ro-
bots have advanced abilities of stepping over an object or striding
over a deep gap with versatile locomotions. However, only few
humanoid researches today have addressed this problem. In this
paper, we consider the problem of planning a humanoid robot’s
motion in a layered environment cluttered with obstacles and
deep narrow gaps. We extend the motion planning system for
humanoids in our previous work to account for multiple locomo-
tions and striding ability for a humanoid robot. Each locomotion
corresponds to a tier in the search space, and the tiers are con-
nected at the locations where motion transitions are possible.
According to a humanoid’s geometric properties, such as maxi-
mal gait size and step height, we propose to apply the Closing
morphological operator to the workspace bitmap to compute the
reachability region for a humanoid with the striding ability. Our
experiments show that our system is efficient in generating versa-
tile motions for a humanoid to reach its goal in a complex envi-
ronment.

Keywords- Motion Planning, Humanoid Robot, Versatile
Locomotions, Computer Animation.

I. INTRODUCTION
Humanoid research has attracted much attention in recent

years. Appealing humanoid robots have been designed in sev-
eral research projects. However, it remains a great challenge
to make humanoid robots move autonomously. Motion plan-
ning is one of the key capabilities that an autonomous robot
should have. It is an even more interesting problem for hu-
manoid robots since locomotion capability possessed by a
humanoid robot is usually much better than other mobile ro-
bots. Like a human, a humanoid robot should be able to step
upstairs or downstairs and stride over small obstacles or a thin
deep gap. In addition, a humanoid robot should be able to
change its locomotion according to the environmental con-
straints in order to avoid obstacles or pass through narrow
passages. Similar needs for the planning capability also arise
in the domain of computer animation in generating motions
for autonomous characters.

In our previous work, we have been able to plan efficient
humanoid walk motions in a layered environment. The ap-
proach used in the planner decomposes the planning problem
into global and local planning such that each subproblem is
easier to solve. The global planner assumes some basic prop-

erties of a humanoid and uses an approximated geometric
shape to define the path planning problem. The path generated
by the global planner is passed to the local planner to realize
the path with appropriate walk motions. However, in our pre-
vious work, a humanoid’s locomotion is limited to forward
walking only, and a humanoid cannot pass a deep gap even if
it can stride over it. In this paper, we will extend the work to
overcome the above two limitations and present an efficient
implementation of the planner in terms of space and time such
that it can be used in an on-line manner.

The rest of the paper will be organized as follows. In the
next section, we will review the researches pertaining to our
work. In the third section, we will give a brief description of
the problem we consider in this paper. In the fourth section,
we will present the planning algorithm that we propose in the
paper. In the fifth section, some implementation details and
experimental results will be presented. In the last section, we
will conclude the paper with some future work.

II. RELATED WORK
Motion planning problems have been studied for more

than three decades. An overview of motion planning algo-
rithms can be founding in Latombe’s book [9]. The researches
pertaining to humanoid motion planning or simulation can be
found in fields of robotics and computer animation [8][11][13].
These researches differ mainly on the way they perform the
global path planning and how the locomotion is taken into
account. For example, early work in computer animation fo-
cused on generating human walking motion to achieve a high-
level goal [1]. However, no planning is done to generate the
global path automatically. Since the application is mainly for
computer graphics, how to simulate human walking with real-
istic looking is the main concern [13]. A dynamic filtering
algorithm is proposed in [14] to ensure that the generated mo-
tions can be transformed into a dynamically feasible one.

In [6], a gross motion planner utilizing graphics hardware
has been proposed to generate humanoid body motion on a flat
ground in real time. Captured locomotion is used in this case
to move the humanoid along the generated global path. In [5],
a stochastic search approach with versatile locomotion has
been proposed to generate humanoid motions in an unstruc-
tured environment where a set of predefined grasp points
serve as contact constraints. In [3], sequences of valid foot-
prints are searched through augmented probabilistic roadmap

Appear in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2004

with a posture transition graph, and then each pairs of foot-
prints are substituted by corresponding motion clips. Since the
motion clips are captured in advance, the locomotion may not
be flexibly adapted to uneven terrain to avoid collisions. In
[12], a multi-layer grid is used to represent the configuration
space for a humanoid with different locomotion such as walk-
ing and crawling and the humanoid may change its posture
along a global path. In [7] and [8], a humanoid robot with real-
time vision and collision detection abilities is presented. The
robot can plan its footsteps amongst obstacles but cannot step
onto them. Considering locomotion directly in global path
planning may generate more complete result but, on the other
hand, it limits the flexibility of locomotion. A recent work that
can plan efficient humanoid motions in real time with a given
general description of the objects in the workspace has been
proposed in [10]. A more detailed description of this approach
will be given in the next two sections.

III. PROBLEM DESCRIPTION
The inputs to a typical motion planner for a humanoid ro-

bot include the initial and goal configurations of the robot, the
kinematics description and locomotion abilities of the robot,
and a geometric description of objects in the environment. In
our approach, the planning problem can be decomposed into
two subproblems: the global motion planning for moving the
body trunk of a humanoid and the local motion planning for
realizing the global motion plan with appropriate locomotion.
The planners at the two levels can be linked together to solve
the problem in sequence as well as to feed back failure situa-

tion for further replanning as shown in Fig. 1. The global mo-
tion planning will be the main concern of this paper.

A. Modeling the Environment
We assume that we are given geometric description of the

objects in the workspace such as the one shown in Fig. 2. Each
object is given with a height and an offset from a reference
level (such as the ground) in addition to its polygonal descrip-
tion. According to this geometric description, one can discre-
tize the workspace into a grid of cells with an appropriate
resolution. The resolution is chosen such that the area of a cell
can allow a foot of the humanoid to step onto. Each cell in the
workspace is given an offset value representing the distance
from an object’s bottom to some referenced ground. Each cell
is also assigned a height value above the offset. According to
the objects’ offset values, we separate the 3D workspace into
multiple connected 2D layers. Note that in a layered environ-
ment a point in the horizontal plane may have different offset
and height values on different layers.

B. Modeling the Humanoid
The kinematic description of a humanoid robot includes

the maximal gait size, step height, and the bounding cylinder
for each type of locomotion that the robot can adopt. Unlike
traditional motion planning problems where the obstacles are
given explicitly, the definition of obstacles in our case de-
pends on the humanoid’s kinematic properties as well as the
objects’ geometry. For example, an object is an obstacle to a
humanoid only if there is no way for the humanoid to step
onto or pass under the object for a given locomotion due to the
humanoid’s height and leg length.

In global motion planning for a humanoid, we assume
that the humanoid can be modeled as a bounding cylinder to
simplifying collision detection. In our system, we uses a large
and a small cylinders to model a humanoid in frontal and lat-
eral walking, respectively, as shown in Fig. 3. The radius of
the inner cylinder is the size of the minimal region for a stable
stance. The radius of the outer cylinder is determined accord-
ing to the locomotion. We use the largest lateral width or-
thogonal to the humanoid’s moving direction to determine the
radius. For example, the cylinder used to plan the side-walk
motion is smaller than the one for regular walking motion.

Fig.1. Planning loop for a typical query of humanoid motion.
Fig.3. Frontal and lateral walking model for the humanoid.

Fig.2. Example of a layered virtual environment with deep nar-

row gaps (colored columns between two large platforms)

failure

success
complete
motion global

path
qinit
qgoal

motion patterns
and abilities

environment and
humanoid setting Reachability &

Collision model

Global
Motion
Planner

Local
Motion
Planner

The heights of both cylinders are also related to the human-
oid’s height and locomotions. If we allow the humanoid to
bend its upper body during the walking cycle, the actual
height may be lower than the humanoid’s height. When using
cylinders to model the geometry of a humanoid, we are actu-
ally ignoring its orientation at the planning time. We can re-
cover the orientation of a humanoid in a postprocessig step
according to the locomotion used.

We assume that a humanoid robot can perform several lo-
comotions and choose the most appropriate one according to
the environment. Although we can consider several major
locomotions, such as walking, crawling, jumping and climbing
in the local motion planner in order to generate a collision-free
motion for the humanoid figures, only forward and side walk-
ing motions will be demonstrated in this work. In addition, we
assume that the local planner can generate the motion transi-
tion from one type of locomotion to another at a given con-
figuration.

IV. MOTION PLANNING FOR HUMANOIDS
As described in the previous section, we use a decoupled

approach to reduce the complexity of motion planning prob-
lem. In this section, we will focus on addressing the global
path planning problem for a humanoid with multiple locomo-
tions and striding abilities. We will first describe how we pre-
pare the search space with the given environmental description
and a humanoid’s data. Then we will present the planning
algorithm that is used to search for a feasible path with these
new abilities.

A. Reachable Regions
The reachable region for a humanoid in the workspace is

affected by several factors. For walking motion, we need to
take the humanoid’s maximal gait size and leg length into
consideration as well as the bounding cylinder’s height. In our
previous work, we use neighboring cells’ height difference
and the humanoid’s leg length to decide the reachable regions
in each layer. The height difference between two neighboring
layers is also checked to ensure that a humanoid can pass
through under the constraint of the layers above the current
one. However, for an environment with deep narrow gaps
such as the one shown in Fig. 2, large height differences be-
tween neighboring cells prevent a humanoid to move across
the region occupied by the columns. The main difficulty
comes from the fact that we only check the neighbors that are
one cell away although the humanoid’s maximal gait size
could occupy several cells.

A straightforward approach will be extending the search
algorithm to visit all the neighbors that are d cells away from
the current configuration and take the legal ones for further
processing. An obvious drawback of this approach is that the
number of neighbors increases rapidly as the gait size in-
creases. The planning time will suffer as the number of visited
cells soars. In addition, if we do not have a good idea about
the reachable region, it would be difficult to compute an effec-
tive potential field to guild the search.

In this paper, we propose a method to compute the reach-
ability region from a given configuration. This method can

accounts for the striding ability of a humanoid to handle dis-
continuous regions. The idea is that we can connect together
the separated regions within gait range by using the “Closing”
operator, an important morphological operator in image proc-
essing [4]. Closing tends to smooth sections of the image. It
generally fuses narrow breaks and long thin gulfs, eliminates
small holes, and fills gaps in the image. Closing of set A by a
structuring element B, denoted A•B, is defined as:

BBABA Θ⊕=•)(.
The equation, in words, says that the closing of A by B is sim-
ply the dilation of A by B, followed by the erosion of the result
by B. The height map is A in our case, and we select the circle
with a radius of half of gait size as the structuring element B.
The dilation operation (BA⊕) will extend the edge of ob-
jects in bitmap by 1/2 gait size, which fills small gaps or holes
between two disconnect regions if these regions are near. Af-
ter dilation, the resulting bitmap shows that two regions are
connected if their distance is within one foot step (See Fig.
4(b)). But for the extended edges which do not connect to
other regions, we apply erosion (BAΘ) to eliminate these
useless edges. The erosion operation will corrode the edges in
bitmap by 1/2 gait size, which dose not break the connected
regions. Fig. 4(c) shows the result after erosion. Note that the
unnecessary edges are removed after the operation and the
map gets back to its original shape as in Fig. 2(a) except for
connected discontinuous small regions.

 (a) (b)

 (c) (d)

Fig.4. (a) height map for the environment in Fig. 2., (b) map in
(a) after applying dilation, (c) map in (b) after applying erosion.
After the closing operator, the columns in the discontinuous
region are connected. (d) instability map

We use the height map after the closing operation to de-
termine each cell’s reachability. A cell is considered an obsta-
cle cell if and only if there are no ways to reach the cell from
its neighbors under the height constraint. Given an initial con-
figuration of the humanoid, we can compute a map, called
reachability map, where obstacle regions are composed of the
cells that cannot be reached. This map can be computed by a
wave propagation algorithm such as the one used to construct
NF1 potential field [9]. The only difference is that we advance
to a cell only if the height difference is less than the human-
oid’s leg length.

B. Collision Map
We can convert the height map, built in the workspace,

into its corresponding C-space by growing the obstacle re-
gions with the bounding cylinder’s radius of the humanoid for
a given locomotion. We need to identify the regions where
unstable situation might occur if a humanoid stays there for
too long. A map describing the regions is called instability
map (see Fig.4(d) for an example). A cell in the instability
map is defined as unstable if and only if the region covered by
the enclosing circle of a humanoid contains cells with differ-
ent heights and this height difference is smaller than the hu-
manoid’s step height. Otherwise, if this region contains an
object whose height difference is larger than humanoid’s step
height, we call the cell a forbidden cell. A cell is defined as
gap if and only if the region in height map is reachable after
the closing operation. A humanoid can enter the unstable or
gap regions for trespassing purpose but the transition time
usually needs to be short. Therefore, we have set an upper
bound for each type of region to prevent the humanoid from
staying in these regions for too long.

C. Path Planning Algorithm
The planning algorithm that we used to compute the hu-

manoid motion is shown Fig. 5. The STABLE_BFP algorithm
is similar to the classical Best-First Planning algorithm that is
used to solve path-planning problems with low DOF’s[2]. In
each iteration of the search loop, we use the FIRST operation
to select the most promising configuration q from the list of

candidates (OPEN) for further exploration. We visit each
neighbor q’ of q, check their validity (via the LEGAL opera-
tion) and maintain their stability (through STABLE operation)
for further consideration. The number of neighbors is related
to the number of major locomotions, n. That is, if we visited m
neighbors for each locomotion, we have to visited m*n
neighbors in each iteration. The procedures for checking sta-
bility and legality are shown in Fig. 6. A configuration is legal
if it is collision-free, marked unvisited, and temporarily stable.
It is temporarily stable if and only if the humanoid has not
entered the unstable region or gap region longer than some
specified value. This duration is kept as an instability counter
(q’.cnt) in each cell in the unstable region and step counter
(q’.step) in the gap region when we propagate nodes into it.
Note that the validity of a configuration in the unstable or gap
regions depends on the counter of its parent configuration. If
there are more than one possible parent configurations, we
cannot exclude any of them. Therefore, in the STABLE_BFP
algorithm, we do not mark a configuration visited if it is in the
unstable or gap region. A configuration in these regions can be
visited multiple times as long as the counter does not exceed
the maximal bound. In a gap region, we need to check the gap
width with the gait size. We keep the start point of a gap
(gap_begin) when we first enter the gap region and the end
point of a gap (gap_end) when a stable region is reached.
These two points are used to count the gap width, and the pro-
cedure is to ensure that the gap does not exceed the gait size
and the humanoid can stride from gap_begin to gap_end.

In the STABLE_BFP algorithm, we use the FIRST opera-
tion to select the most promising configuration for further ex-

STABLE_BFP()
1 install qi in T;
2 INSERT(qi, OPEN); mark qi visited;
3 SUCCESS ← false;
4 while ┐EMPTY(OPEN) and ┐SUCCESS do
5 q←FIRST(OPEN);
6 for every neighbor q’ of q in the grid do
7 if q’ is stable then
8 mark q’ visited;
9 if LEGAL(q’, q) then
10 install q’ in T with a pointer toward q;
11 INSERT(q’, OPEN);
12 if q’ = qg then SUCCESS ← true;
13 if SUCCESS then
14 return the backtracked feasible path
15 else return failure;

Fig.5. The STABLE_BFP algorithm

STABLE (q’ ,q)
 if q’ is unstable then
 q’.cnt= q.cnt+1;
 else if q’ is gap then
 if q.ingap then
 q’.step= q.step+1;
 else
 q’.step=1;
 q’.ingap=true;
 gap_begin= q;
 else if q’ is stable and q.ingap then
 gap_end= q’;

LEGAL (q’ ,q)
 STABLE(q’ ,q)
 if q’ is visited or forbidden then
 return false;
 if q’ is gap and q’.step>N then
 return false;
 if q’ is unstable and q’.cnt>M then
 return false;
 if q’ is stable and q.ingap then
 check distance between gap_begin and gap_end;
 if the distance is large than gait size, then
 return false;
 return true;

Fig. 6. The STABLE and LEGAL procedures

ploration. In the case of the BFP planners, the artificial poten-
tial field is usually the only index for the goodness criterium.
Planners with this approach can usually yield short paths. In
our case, the height difference could be an important index as
well since one may prefer climbing up or stepping down stairs
to taking a longer path. Preference on each available locomo-
tion is also an important factor. For example, generally speak-
ing, we prefer walking to crawling. Therefore, in the FIRST
operation, we use a linear combination of these criteria, whose
weights are specified by the user. In general, unstable regions
and gap regions have lower preference, and staying in these
regions is not preferred. Therefore, we use instability (q.cnt)
or step counter (q.step) as a penalty measurement to avoid
motions over difficult area whenever possible.

V. IMPLEMENTION AND EXPERIMENTS
We have implemented the global and local motion plan-

ners in Java and connected the planners to a VRML browser
to display the final simulation results. All the planning times
reported below are taken from experiments run on a regular
1.6GHz PC. The size of the workspace is 25.6m x 25.6m, and
the height and gait size of the humanoid is 180cm and 60cm,
respectively. The width of the shoulder (for enclosing cylinder)
and the foot length is 60cm and 37cm, respectively. The reso-
lutions for the grid workspace and configuration space are all
256x256 in the global planner. In the following subsection, we
will describe how to optimize storage space by merging sev-
eral layers with sparse objects in them to fewer layers. We will
also use an example to demonstrate the ability and efficiency
of the planner in later subsections.

A. Merging Layers with Sparse Objects
In our system we use an object’s offset value to separate

the workspace into several 2D grid layers. However, for work-

space like gyratory stairs, such as the one shown in Figure 7,
each stair may have a unique offset value, and we need a layer
for each offset. The result is that each of the layered maps
only contains sparse objects. As the number of layers in-
creases, not only the storage space will increase, but the search
performance will degrade as well. In our implementation, we
first sort the objects in workspace by their offsets in ascending
order. Then we add objects into the first layer one by one until
an object overlapped with other objects in this layer. A new
layer is then created on demand. After this process, each ob-
ject is assigned to a specified layer, and the resulting number
of merged layers is usually much smaller. Fig.7. is the exam-
ple of gyratory stairs, which need 25 layers if we use offsets to
separate the workspace directly. If we use the merge approach
mentioned above, only two layers are needed to represent the
workspace.

 (a) (b)

 (c) (d)

Fig.7. Merging sparse layers. (a) and (b) are the 3D workspace
with spiral stairs from different views (c) and (d) are the merged
results for layer 1 and layer 2, respectively.

 (a) (b)

 (c) (d)

 (e) (f)

Fig.8. (a) the C-obstacles for forward walking and (b) side walk-
ing. (c) the search result of the global path planner on layer 1
and (d) layer 2, (e) passing the narrow passage with side-walk
motion, (c) feasible local motions generated to walk across the
columns.

B. Example
In Fig.8, we use an example to illustrate the feature of this

planning system. The environment, which is the same as the
one in Fig. 2, consists of two layers of objects with various
sizes and heights scattered into two main platforms, connected
by several marble columns of various heights. Our previous
planner was not able to generate a path across these columns
because of the deep gaps amongst them. In addition, note that
the passage on the left platform is too narrow for the human-
oid to walk through without switching to the side-walk loco-
motion. The C-obstacles (configuration space obstacles) with
different bounding cylinders for forward walking and side
walking are shown in Fig. 8 (a) and (b), respectively. Note that
the narrow passage exists only when side-walk locomotion
(Fig. 8. (b)) is used. The global path found by the planner is
shown in Fig. 8 (c) and (d). In this example, the initial con-
figuration is on the ground, and the goal is at some location on
the second layer that is reachable only through the following
passages: climbing upstairs to the left platform, changing lo-
comotion to side walk to pass the narrow passage, crossing the
columns to the right platform, and climbing upstairs again to
the second layer on the right platform. The planning time for a
typical run consists of two parts: preprocessing and search. In
this example, the total preprocessing time is 251ms (construct-
ing layer map takes 10ms, computing the reachable region
takes 35ms, computing the potential field takes 74ms, and
computing the instability map takes 132ms) and the search
time is 15ms.

C. Planning Performance Compare to Traditional Approach
As mentioned in previous section, traditional straightfor-

ward search algorithms may also be able to find paths with the
striding ability by extending neighbor search range. Compare
to this traditional approach, our approach is superior in per-
formance and extensibility. Assume that a normal walking gait
size is 60cm, which is equal to 6 cells in search space with the
current resolution. In the traditional approach, the number of
neighbors that needs to be covered is 64 for each configuration.
This number could be even larger if we allow the humanoid to
have a larger gait size or if we use finer resolution for the
search space. The search time for an example similar to the
one shown in Fig.8 is 1246ms with the traditional approach
where 64 neighbors are visited at a time and totally 47952
nodes are visited. With our approach, the preprocessing takes
263ms, and the search takes only 34ms. The total number of
visited nodes is 2612. In other words, the proposed planning
approach is faster than the traditional approach by about an
order of magnitude. In addition to the reduced number of vis-
ited neighbors, the new approach is fast also because the po-
tential field computed with a correct reachability map is more
effective. The traditional approach can only use the distance to
the goal as a heuristic since the reachability region is discon-
tinuous.

VI. CONCLUSIONS AND FUTURE WORK
Motion planning is one of the key abilities that an

autonomous agent should have in the context of humanoid
robot and animation character. Although previous work has

made great process in generating humanoid motions automati-
cally in layered environments and uneven terrain, the motions
are still limited by the capabilities of the humanoid such as the
available locomotions and striding. In this paper, we have suc-
cessfully extended the planning system to consider such abili-
ties and demonstrated the efficiency and effectiveness of the
planner by simulation examples. In the future, we would like
to enable the humanoid robot with more locomotion abilities
such that it can have more motion choices in moving the robot
to the goal. In addition, although the decoupled approach in
our system is efficient, there must exist counterexamples
where the local planner cannot realize the path found by the
global planner. Therefore, we will also work on effective re-
planning algorithms by taking the feedback of the local plan-
ner into account.

ACKNOWLEDGEMENT
This work was partially supported by National Science

Council under contract NSC 92-2213-E-004-001.

REFERENCES
[1] A. Bruderlin and T. W. Calvert, “Goal-Directed, Dynamic Animation of

Human Walking,” Proc. of ACM SIGGRAPH, 1989.
[2] J. Barraquand and J. Latombe, “Robot Motion Planning: A Distributed

Representation Approach,” Intl J. of Robotics Research, 10:628-649,
1991.

[3] M.G. Choi, J. Lee, S.Y. Shin, “Planning Biped Locomotion using
Motion Capture Data and Probabilistic Roadmaps,” ACM Transactions
on Graphics, Vol. V, No. N, pp.1–25, October 2002.

[4] R.C. Gonzale and R.E. Woods, Digital Image Processing Second
Edition, Prentice Hall, 2002.

[5] M. Kalisiak and M. Panne, “A grasp-based motion planning algorithm
for character animation,” J. Visual. Comput. Animat, pp.117-129, 2001.

[6] J. Kuffner, “Goal-Directed Navigation for Animated Characters Using
Real-time Path Planning and Control” Proc. of CAPTECH’98 Workshop
on Modeling and Motion capture Techniques for Virtual Environments,
Springer-Verlag, 1998.

[7] J. Kuffner, et al., “Footstep Planning Among Obstacles for Biped
Robots,” Proc. of 2001 IEEE Intl. Conf. on Intelligent Robots and
Systems (IROS 2001), 2001.

[8] J. Kuffner, et al., “Motion Planning for Humanoid Robots under
Obstacle and Dynamic Balance Constraints,” Proc. of IEEE Intl. Conf.
on Robotics and Automation, May 2001.

[9] J. Latombe, Robot Motion Planning, Kluwer, Boston, MA, 1991.
[10] T.Y. Li, P.F. Chen, P.Z. Huang, 2003.9, “Motion Planning for

Humanoid Walking in a Layered Environment,” in Proceedings of the
2003 International Conference on Robotics and Automation.

[11] N. Pollard, et al., “Adapting Human Motion for the Control of a
Humanoid Robot,” Proc. of 2002 IEEE Intl. Conf. on Robotics and
Automation, pp.2265-2270, May 2002.

[12] Z. Shiller, K. Yamane, Y. Nakamura, “Planning Motion Patterns of
Human Figures Using a Multi-Layered Grid and the Dynamics Filter”
Proc. of IEEE Intl. Conf. on Robotics and Automation, pp.1-8, May
2001.

[13] H. C. Sun and N. M. Dimitris, “Automating gait generation,” Proc. of
ACM SIGGRAPH, 2001.

[14] K. Yamane and Y. Nakamura, “Dynamics Filter – Concept and
Implementation of On-Line Motion Generator for Human Figures,”
Proc. of IEEE Intl. Conf. on Robotics and Automation, pp.688-695,
April 2000

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 /CHT ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

