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Abstract 

Traditional approaches to the motion-planning problem 
can be classified into single-query and multiple-query 
problems with the tradeoffs on run-time computation cost 
and adaptability to environment changes. In this paper, we 
propose a novel approach to the problem that can learn 
incrementally on every planning query and effectively 
manage the learned roadmap as the process goes on. This 
planner is based on previous work on probabilistic road-
maps and uses a data structure called Reconfigurable 
Random Forest (RRF), which extends the Rap-
idly-exploring Random Tree (RRT) structure proposed in 
the literature. The planner can account for environmental 
changes while keeping the size of the roadmap small. The 
planner removes invalid nodes in the roadmap as the ob-
stacle configurations change. It also uses a tree-pruning 
algorithm to trim RRF into a more concise representation. 
Our experiments show that the planner is flexible and 
efficient.  

1. Introduction 
The motion-planning problem has been well studied in the 
last three decades. The basic problem, called the find-path 
problem or the piano-mover’s problem, is about finding a 
collision-free path for a robot moving in a workspace 
cluttered with obstacles[17]. The developed techniques for 
solving this problem has been shown to be well applicable 
to many domains other than robotics such as computer 
animation[9], assembly maintainability[7], intelligent 
navigation interfaces[14], and drug designs. According to 
[2], most path planners consist of two phases: preprocess-
ing and query phases. In the preprocessing phase, the 
planning problem is converted into abstract data structures 
such as graphs that will be searched later for a feasible 
path in the query phase. The percentage of running times 
for the two phases might vary greatly for different plan-
ners. For example, in the Randomized Path Planner 
(RPP)[3], most time is spent in the query phase while in 
the Probabilistic Roadmap Method (PRM) planner[8], 
most time is spent in building a roadmap in the preproc-
essing phase.  

Depending on how a planner is used, one can classify the 
planning problems into two categories: single-query and 
multiple-query problems. In the single-query problem, one 
does not assume anything about previous queries, and the 
planner always starts to answer every query from scratch. 
On the other hand, in multiple-query problems, one usu-
ally assumes that the environment does not change often 
and multiple queries will be issued for the same environ-
ment. In this case, the planner can afford to spend more 
time on preprocessing such that the queries afterward can 
be answered more quickly. Choosing an appropriate plan-
ner for a given problem remains a state of art requiring 
human judgment.  
In this paper we propose a unified path-planning approach 
that can be used in an either single-query or multi-
ple-query problem. The planner is well suited for a sin-
gle-query problem, and it learns the given environment 
incrementally as the planner is called multiple times. The 
planner is as efficient as other single-query planners and 
the performance gets improved when the learning process 
goes on. A data structure, called Rapid-exploring Random 
Tree (RRT), has been shown to be an effective roadmap 
representation[11][12]. Our planner extends this structure 
to a more flexible one, called Reconfigurable Random 
Forest (RRF). This data structure allows us to modify the 
roadmap by removing invalid nodes as the obstacle con-
figurations change at run time. In addition, the planner is 
designed to periodically trim unnecessary nodes in RRF in 
order to keep the roadmap slim.  
The rest of the paper is organized as follows. We will first 
review related work in the next section. We will then re-
view the RRT structure, the RRT-Connect algorithm, and 
present our unified approach with the RRF data structure 
in Section 3. In the fourth section, we will extend the 
planner to maintain a concise roadmap in a changeable 
environments. Experimental settings, results, and analysis 
will be given in Section 5. Finally, we will conclude our 
work in the last section. 

2. Related Work 
One can obtain an introduction to the general mo-
tion-planning problem or a survey of approaches in [13]. 
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Generally speaking, early research focuses on developing 
theoretical foundation and complete solutions for the 
problem[17]. However, under the curse of dimensionality, 
this type of solution deems to be impractical for problems 
involving high dimensional spaces. In the last decade, 
several researches start to look for practical solutions that 
can be applied to wider arrange of applications despite 
they usually lack completeness[3][8].  
The randomized planners are the popular approaches 
along this direction. The early RPP planner is a typical 
single-query planner utilizing artificial potential fields as 
search heuristics. In contrast, the PRM planner is a typical 
multiple-query planner that uses a great portion of time to 
construct a representative roadmap for later queries. For 
this type of method, the way that the sampled configura-
tions are selected greatly affects the planning results. 
Variations of sampling strategies have been proposed for a 
generic or a specific problem[1][5]. The work in [15] uses 
visibility information to produce a smaller roadmap. In 
recent years, one form of randomized roadmap called RRT 
has been shown to be effective in solving several difficult 
problems by being able to explore the freespace 
evenly[11][12]. A single-query path planner, called 
RRT-Connect, using this data structure to perform 
bi-directional search has also been developed[10].  
Several planners in the literature took a learning ap-
proach[4][6][8][15]. In one of the early papers proposing 
the idea of probabilistic roadmap, roadmap was used as a 
way to learn the freespace[15]. They observed sharp 
learning curves when the roadmap got denser. However, 
the number of sampled configurations for an acceptable 
success rate remains an empirical setting. In [6], a planer 
called ERPP uses the local minima learned in RPP-based 
planner to build a roadmap for a static environment. The 
work in [4] uses a genetic algorithm to evolve critical 
configurations, called landmarks, for freespace connec-
tivity.  

3. Building incremental roadmap  
The basic path-planning problem is to find a collision-free 
path for a robot amongst obstacles in a given environment. 
The set of all possible configurations q for the robot de-
fine the so-called Configuration Space (C-space for short), 
denoted by C. Let Cfree denote the open subset of colli-
sion-free configurations in C. The path-planning task is to 
find a continuous curve in Cfree connecting an initial con-
figuration, qi, and a goal configuration, qg. 

3.1. The RRT-Connect planning algorithm 
The Rapidly-exploring Random Tree (RRT) was intro-
duced in [11] as an efficient data structure to explore Cfree. 
Its main difference from traditional probabilistic roadmaps 
is on that RRT grows outward from a tree although con-
figurations are sampled randomly in the freespace. As 
depicted in Figure 1, the growing process starts by select-

ing a random configuration, qrand, as the growing direction. 
The nearest configuration, qnear, in the current RRT to qrand 
is determined, and a new configuration, qnew, that is 
ε-distance away from qnear, is computed and added into 
the RRT. This process is called EXTEND. In [10], an effi-
cient single-query planning algorithm, called 
RRT-Connect, uses RRT as the main data structure to 
connect the given initial and goal configurations (qi and 
qg). Two RRT’s, rooted at qi and qg, respectively, are used 
to connect to each other. At each step of the growing 
process, a random configuration qrand is sampled in the 
freespace. One RRT uses the EXTEND procedure to add 
to itself a new configuration, qnew, while the other RRT 
uses another procedure called CONNECT to grow (EX-
TEND) toward qnew as much as possible. If CONNECT 
can bring the RRT to reach qnew, then the two RRT’s have 
been successfully connected and a feasible path is re-
turned. Otherwise, the two RRT’s swap to allow them to 
grow in the other direction.  

3.2. The incremental learning algorithm: 
RRF_CONNECT 

Since the RRT-Connect planner is a single-query planner, 
it always starts from scratch for applications requiring 
multiple queries,. However, we think the freespace ex-
plored in previous planning queries could be very useful 
in the ones that follow. Therefore, we extend the 
RRT-Connect algorithm to take advantage of the previous 
learned knowledge about the freespace to save time in 
future queries. Since previously learned RRT’s are kept 
for future uses, the data structure becomes a forest con-
sisting of multiple RRTs. We called this forest, Recon-
figurable Random Forest (RRF). It is reconfigurable be-
cause the trees in the forest can be merged, split, or pruned 
in the planning process.  
Figure 2 shows the RRF_CONNECT planning algorithm. 
The algorithm assumes a global data structure called for-
est to store the list of currently maintained trees. A main 
subprocedure used in RRF_CONNECT is called 
MERGE_RRTs. This procedure tries to connect each tree 
in the forest, except for the currently considered tree TA, to 
the designated new configuration, qnew, via the CONNECT 
procedure. The tree is merged with TA if the connection is 

 
 
 
 
 
 
 

Figure 1: Two RRT’s use EXTEND and CONNECT 
to merge into one tree 
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successful. In the RRF_CONNECT algorithm, after the 
trees rooted at qi and qg are initialized, we first call the 
MERGE_RRTs procedure to see if we can connect the two 
configurations to the forest without adding additional con-
figurations. If this is not successful, a randomly sampled 
configuration, qrand, will be selected to extend Ti, and 
MERGE_RRT will then be called again. This process will 
repeat until the Ti and Tg are merged (success) or a prede-
fined maximal number of sample configurations is 
reached (failure). 

4. Roadmap management 
As the learning process goes on, the RRF structure might 
need to be updated for a few reasons. First, if the obstacle 
configurations are changeable at run time, then there 
should be a way to invalidate certain portion of the forest. 
Second, there should be a way to trim unnecessary nodes 
as the forest grows. Keeping a tidy roadmap not only save 
space but also the time required to search for a path. 

4.1. Extension to consider environment changes 
The assumption of static environment restricts the appli-
cation domain of roadmap-based methods. In general, 
when the environment changes, the roadmap needs to be 
reconstructed. However, there exist applications where 
obstacles in the environments need to be moved but not 
constantly or frequently. For these scenarios, a major por-
tion of the roadmap might still remain valid and useful for 
future queries. All we have to do is remove invalid nodes 
after the obstacle changes and reconstruct the RRF struc-
ture.  
We use the following process to reconstruct RRF after the 

obstacle configuration changes. First, we compute the 
candidate nodes whose configurations fall inside the 
bounding box of the obstacle’s new configuration. Second, 
we perform collision checks on these nodes to find the list 
of invalid ones to be removed. Third, for each invalid 
node, we check if their children are also in the invalid list. 
If not, then the subtree rooted at each of these child nodes 
will be trimmed off and becomes a new tree in RRF.  
In the above update process, the first step may contain 
example-specific procedure to compute the bounding box 
of obstacles in C-space. The second step is the most 
time-consuming one since it involves collision detections 
to find invalid nodes. However, for time-critical applica-
tions, we think this step could be totally skipped without 
sacrificing the correctness of the planning result. First, 
these nodes are selected under a necessary condition. The 
list contains a conservative list of candidate nodes. Second, 
if the obstacle is currently moving, its bounding box could 
contain nodes that will become invalid sooner or later. 
Third, since the RRT structure tends to grow the tree to-
ward unexplored area, the extra space cleaned up due to 
the imprecise update can be filled up quickly in the future 
learning process. Examples of this update process will be 
given in the next section. 

4.2. Forest pruning 
As the learning process goes on, the number of nodes 
added into RRF increases significantly. Although the more 
nodes in a roadmap, the better they can capture the overall 
structure of freespace. However, as the number of nodes 
increases to some degree, the performance of the planner 
might be worsen due to the large roadmap size. As a result, 
it is desirable to prune RRF to make it a more concise 
representation. In Figure 3, we show an example of prun-
ing an RRF from a dense roadmap (2675 nodes, Figure 
3(a)) to a tidier one (70 nodes, Figure 3(b)).  
The PRUNE_TREE algorithm that is used to prune the 
trees in an RRF is listed in Figure 4. A tree is considered 
too dense vertically or horizontally if there exists a node 
too close to its grandparent node or to its sibling nodes, 
respectively. In this algorithm, we traverse the given tree 
in post-order, where a node is examined after its subtrees 

  
 (a) (b) 
Figure 3. An example of tree pruning from (a) to (b) 

MERGE_RRTs(TA, qnew) 
1 for each T in forest 
2  if (T ≠ TA) 
3   if (CONNECT(T , qnew) = Reached) 
4    REVERSE_PARENT(T , qnew); 
5    forest.remove(T); 
6 return; 
RRF_CONNECT(qi , qg , K) 
1 Ti.init(qi); Tg.init(qg); 
2 forest.add(Ti); forest.add(Tg); 
3 MERGE_RRTs(Tg , qg); 
4 MERGE_RRTs(Ti , qi); 
5 if (Ti.tree_id = Tg.tree_id) 
6  return PATH(qi, qg); 
7 for k =1 to K do 
8  qrand ← RANDOM_CONF( ); 
9  if (EXTEND (Ti , qrand) ≠ Trapped) 
10   MERGE_RRTs (Ti , Ti.qnew); 
11   if (Ti.tree_id = Tg.tree_id) 
12    return PATH(qi, qg); 
13  SWAP(Ti , Tg); 
14 return Failure; 

Figure 2: The RRF_ CONNECT algorithm 
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are traversed. When a tree is traversed, we remove nodes 
that are considered redundant to the structure of the tree. 
When examining a node (qp), we first check if the distance 
between each of its child nodes (qc) and its parent node 
(qgp), in some user-specified metric, is less than some limit, 
MinVMergeD, and there exists a collision-free 
straight-line path between them. If the above conditions 
are met, we perform a vertical merge (V_MERGE) opera-
tion that makes the qc node connect to the qgp node di-
rectly instead of to the qp node, as shown in Figure 5(a). 
Since the qp node must have children to satisfy the above 
conditions, it must be an interior node in a tree. However, 
if the qp node becomes a leaf node after its children are all 
relinked to its parent, then it is deleted from the tree. Sec-
ond, we check if the distance between any ordered pair of 
child nodes (qc1 and qc2) is less than some limit, 
MinHMergeD, and all of qc1‘s child nodes, if any, can be 
moved to qc2 with collision-free links. If so, we perform a 
horizontal merge (H_MERGE) operation to move the 
links, and qc1 is deleted from the tree, as shown in Figure 
5(b).  

5. Experiments 
The aforementioned planner has been fully implemented 
in Java. The planning times reported in this paper were 
collected from experiments running on a regular PC with 
a K6-3 400 MHz processor. The size of the C-space (x, y, 
θ) for all examples shown in this paper is 128x128x100. 
The roadmaps depicted in this section are actually 2D 
projections of 3D C-space into the 2D workspace. 

5.1. Experiments for static environments 
Among several tested examples, a basic path-planning 

example with an arrow-shaped robot in static environ-
ments is shown in Figure 6. The number of sampled nodes 
and the planning time are 699 and 0.2 sec. The example 
assumes a clean start with no pre-built roadmap. In our 
experiments, we continued to issue a great number of 
random planning queries for the same static environment 
to see how the later one can take advantage of the road-
map learned earlier. Two snapshots of the incremental 
roadmap construction process are shown in Figure 7. The 
roots of the trees in RRF are depicted with solid dots. The 
RRF in Figure 7(a) contains seven trees. As the number of 
planning queries increase, the number of nodes in RRF 
increases to 2359 and the number of trees reduces to two 
only, as shown in Figure 7(c). The planning times for the 
example will be reported in a later subsection. 

5.2. Example for environments with obstacle con-
figuration changes 

We have implemented the algorithm in Section 4.1 to al-
low configuration changes of environmental obstacles. An 
example illustrating the idea of reconfigurable forest is 
shown in Figure 8. The example starts with no pre-built 
roadmap (Figure 8(a)) and after 1000 planning queries, 
the RRF ends up with a dense roadmap consisting of a 
single RRT (Figure 8(b)). Then, we moved the obstacles 
on the lower-right corner to the center of the workspace. 
The roadmap is updated with the principles described in 
Section 4.1, and the update process takes only about 50 
ms. About 300 invalid nodes are detected and removed 
from the RRF, resulting in 22 new trees as shown in Fig-

  
 (a) (b)  
Figure 6. A basic example: (a) found paths and (b) 

the generated roadmaps. 

  
(a) (b) 

Figure 7. Snapshots of a growing RRF  

PRUNE_TREE(qp) 
1 if qp is NOT ROOT 
2  for each child qc of qp 
3   if DIST(qp.parent , qc) < MinVMergeD 
4    V_MERGE(qp.parent, qp, qc); 
5 for each child qc of qp 
6  PRUNE_TREE(qc); 
7 if qp.nb_children >= 2 
8  for each pair (qc1, qc2) in (qp.child, qp.child) 
9   if DIST(qc1, qc2) < MinHMergeD 
10    H_MERGE(qc1, qc2); 

Figure 4: The PRUNE_TREE algorithm prunes 
a given tree to a more concise representation

 
 
 
 (a) (b) 
Figure 5: (a) Vertical and (b) horizontal merges
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ure 8(c). The roots of these trees, surrounding the moved 
obstacle, indicate where the forest is split. After another 
500 random planning queries, the empty area that was 
originally occupied by the obstacle is quickly and evenly 
filled with new nodes, as shown in Figure 8(d). In this 
aspect, the RRT structure, compared to other roadmap 
representations, demonstrates its strength in exploring 
unvisited area and therefore is more appropriate for man-
aging roadmaps in such a dynamic scenario.  

5.3. Experiments on forest pruning 
We use the example shown in Figure 9 to illustrate the 
effects of the forest pruning process. The RRF roadmap 
shown in Figure 9(a) contains 5974 nodes in total. Ac-
cording to the PRUNE_TREE algorithm in Section 4.2, 
two types of merges might be applied to RRF to reduce its 
size. To observe the effect of each type of operation, we 
only perform the vertical-merge operation that attempts to 
reduce the hierarchy of RRF by removing interior nodes. 
After 741ms of computation, we can reduce the number of 
nodes to 3412 as shown in Figure 9(b). This operation has 
flattened the RRF, but it also results in trees that are too 
broad horizontally. By applying the horizontal-merge op-
eration, which takes 291ms, we obtain an RRF consisting 
of 518 nodes only as shown in Figure 9(c). If we apply the 
vertical and horizontal merges simultaneously as in the 
PRUNE_TREE algorithm, the computation time is only 
about 330ms. Like most algorithms for smoothing paths 
generated by a path planner, the PRUNE_TREE proce-
dure does not guarantee to result in an optimal solution at 
once. Instead, the procedure can be applied to an RRF 
iteratively possibly until the size cannot be further reduced. 

In Figure 9(d), we show such an example consisting of 
200 nodes only. 
Two parameters in the PRUNE_TREE procedure can be 
set empirically to determine the resulting RRF: Min-
VMergeD and MinHMergeD. In the figures mentioned 
above, the MinVMergeD and MinHMergeD are four and 
two times of the ε-distance used in the EXTEND proce-
dure, respectively. A smaller value for these minimal dis-
tances yields a finer but larger roadmap. In Figure 9(e), 
we show an example of a finer RRF consisting of 609 
nodes with the minimal distances set to ε. Furthermore, 
the PRUNE_TREE procedure can be applied periodically 
to RRF during the learning process. Our experiments 
show that the number of nodes in RRF can often be fur-
ther reduced as the process goes on. For example, a tidier 
representation of 122 nodes for the RRF can be obtained, 
as shown in Figure 9(f), after a few iterations of planning 
query and tree-pruning operations.  

5.4. Discussion 
A major advantage of the proposed learning approach is 

  
(a) (b) 

  
 (c) (d) 
Figure 8. An example of RRF in a changeable en-

vironment 

  
 (a) (b) 

  
 (c) (d) 

  
 (e) (f) 

Figure 9. Experimental results on forest pruning 
with different parameter settings 
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that the C-space can be learned incrementally as the proc-
ess goes on. Our experiments show that, as one can expect, 
the planner learns more about the C-space when the query 
problem is difficult. However, the occasions are rather 
sparse. For example, as shown in Figure 10(a), the planner 
learns about most of the C-space in the very beginning 
and a few times in the middle of 1500 queries. In this ex-
periment, the PRUNE_TREE procedure was called every 
500 queries to reduce the number of nodes in RRF, and we 
were able to reduce it by a factor of 10, as shown in Fig-
ure 10(b).  
In previous subsection, we have shown the effect of the 
parameters, such as MinVMergeD and MinHMergeD, in 
the PRUNE_TREE algorithm qualitatively. However, we 
need to do further experiments in order to determine their 
effects on planning times after RRF is pruned. Intuitively 
speaking, less nodes means harder to merge trees but 
faster to search the roadmap. Similarly, it is difficult to 
determine an optimal frequency for pruning an RRF. It 
takes time to prune a tree but a smaller and better roadmap 
representation could save time in the long run.  

6. Conclusions 
In this paper, we have described an incremental learning 
approach to the general path-planning problem. This ap-
proach extends the RRT-Connect algorithm proposed in 
the literature to maintain the RRF roadmap learned in pre-
vious queries. The new planner can manage the roadmap 
effectively and efficiently as the environment changes and 
the learning process goes on. In addition, the planner can 
be run in an unsupervised manner since it can always 

maintain a concise and representative roadmap. We be-
lieve that such a path planner can be applied to a wider 
range of applications in robotics and other related fields.  
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Figure 10. Planning times and accumulated num-
ber of nodes as number of queries increases 


