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Abstract: This paper aims to explore the way of evaluating the automatic text grader for 
open-ended questions by considering the relationships among raters, grade levels, and 
prediction errors. The open-ended question in this study was about aurora and required 
knowledge of earth science and physics. Each student’s response was graded from 0 to 10 
points by three raters. The automatic grading systems were designed as support-vector- 
machine regression models with linear, quadratic, and RBF kernel respectively. The three 
kinds of regression models were separately trained through grades by three human raters 
and the average grades. The preliminary evaluation with 391 students’ data shows results 
as the following: (1) The higher the grade-level is, the larger the prediction error is. (2) 
The ranks of prediction errors of human-rater-trained models at three grade levels are 
different. (3) The model trained through the average grades has the best performance at all 
three grade-levels no matter what the kind of kernel is. These results suggest that 
examining the prediction errors of models in detail on different grade-levels is worthwhile 
for finding the best matching between raters’ grades and models. 
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Introduction 
 
Open-ended questions that give students more freedom in reasoning may serve as a better 
foundation for authentic science assessments [1][3]. In science education, higher-level 
thinking abilities, such as hypothetical reasoning, idea generation, and self-explanation, 
are important curriculum goals. Apparently, open-ended questions are more suitable to 
measure these constructs than multiple-choice questions, which give much hints and the 
possibility of making a guess [3]. Despite the advantages of using open-ended 
short-answer questions to assess students, most teachers hesitate to widely adopt it 
probably due to a large number of students and the limited educational resources. 
Processing natural language data in assessments may raise the cost in grading and 
analyzing answers. Therefore, it is much desirable to have a system that can grade a large 
volume of open-ended tests automatically.  

In fact, much research has been conducted for automated essay grading in the area of 
language learning and writing [2]. For science learning assessment, Wang et al in [4] 
proposed an automatic scoring system that can grade open-ended questions with the form 
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of ideation and explanation. The texts answered by the students were first segmented into 
keyword phrases and then compared with the expert model for grading. The system is 
further extended to use regression methods from machine learning to learn the weights of 
the keywords indentified from students’ answers [5]. Based on their work, the automatic 
graders in this study are designed as support vector machine (SVM) regression models 
with three kinds of kernels, including linear, quadratic, and RBF kernel. 

In this paper, we would like to look further into the way of evaluating automatic 
graders. In [4] and [5] the aspect of evaluating grader’s performance is only reliability, 
using Pearson’s correlation coefficient and Cohen’s kappa. However lacking of prediction 
error, the evaluation is not completed because the goal of estimating model’s parameters 
in training phase is exactly reducing the error [6]. In addition, the prediction errors at 
different grade-levels should be examined separately. In science learning assessment, 
responses of many open-ended questions may involve complex and variable linguistic 
features when the questions ask for reasoning and utilizing complicated knowledge. In this 
kind of cases, as long as an automatic grader cannot capture the linguistic features, the 
error will be large. Because answers of high ability students may be more unpredicted 
through the limited training dataset, the prediction error at high grade-level will be larger. 
However, the error at high grade-level is simply what we care about and therefore is worth 
examining in detail. 

Moreover, the raters’ influence on prediction error should be taken into account. For 
achieving objectivity, it is the standard procedure of recruiting raters more than one. One 
rater’s way of interpreting students’ answers must be different from others’. Some rater’s 
grading may match the model better and consequently may have better performance.  

To sum up, for building up the automatic grader based on SVM regression, we need 
to evaluate the three kinds of kernels with the grade datasets of raters and we focus on the 
prediction error at different grade-levels.  
 
1. Assessment Design 
 
1.1 Task characteristics and coding Scheme 
The open-ended question in this study was one of questions in the test for selecting senior 
high school students of Taiwan to participate the International Earth Science Olympiad in 
2008. 391 students took this test. The question was about aurora as the following: 

What is the mechanism of aurora? Why does the aurora only happen on 
both poles of earth? 

The total grade is 10 points. If students point out the solar wind and describe compositions 
and origin of it, they score 3 points. If they mention the magnetic field of earth, the Van 
Allen radiation belt, the interaction between the magnetic field and charged particles, and 
the effect of high-energy particles on air particles, then they score 4 points. If they explain 
the formation of the Van Allen radiation belt, relate lightening to the electron transition 
between energy levels, and describe that charged particles are trapped by earth’s magnetic 
field and move toward earth’s poles, then they score 3 points. Because the knowledge is 
far beyond the curriculum of senior high school and complicated enough, the high 
variation in the responses of high ability students can be used to test the limitation of 
automatic graders. 
 
1.2 Inter-rater agreement  
Each student’s response was graded by three raters. One of the raters has doctorial degree 
of earth science, and the others have master degree of earth science. The inter-rater 
reliabilities (Pearson correlation coefficient, r) and rater bias (mean absolute distance, 
MAD) are shown in Table 1. Because we also use the grades averaged on three raters to 
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train model, the measures of inter-rater agreement between a human rater and the average 
are also presented 
Table 1: Pearson correlation coefficient (r) and mean absolute distance (MAD) between two human 

raters and between a human rater and the average. 

Rater 1 Rater 2 Rater 3 Average  
r AD r AD r AD r AD 

Rater 1 1 0 4** 07 9** 97 3** 58 
Rater 2  1 0 1** 04 6** 62 
Rater 3  1 0 4** 55 
Average    1 0 

**p< .01 
 
 
 
 
 
 
 
 
 
 
 
 
 
in Table 1. The correlation coefficients are in the range of 0.79 to 0.96. The statistics of 
MAD rage from 0.55 to 1.07. 
The grades are divided into three levels. The grades below 2 points, between 2 and 4 
points, and above 4 points respectively are low, middle, and high level. MADs between 
human raters at three levels are shown in Figure 1. MADs between each human rater and 
the average are shown in Figure 2. As both graphs shown, the rater bias at high grade-level 
is higher than at low grade-level. The bias between a human rater and the average is 
smaller than between human raters. 
 
2. Automatic grading models 
 
We have used the Support Vector Machine (SVM) regression method in this system to 
train the regression model for numeric predictions from training data. SVM is a common 
machine learning method that is used to search for an optimal decision hyper-plane that 
possesses the maximum margin between the closest positive and negative examples. For 
problems that are not linearly separated, the kernel projection method that projects the 
problem into a higher dimension is commonly used to achieve non-linear regression. We 
have adopted an open source software package for machine learning called Weka to derive 
our system [6]. The kernel projection methods that we have chosen to compare with linear 
model are based on the 2nd degree polynomial (quadratic) and radial-basis function 
(RBF). 

The numeric prediction of grades made by a generic regression model can be 
expressed in the following linear form: kk xxWXy ωωω +++= ..),(ˆ 110 , where 
X=(x1, ... ,xk)T are features employed to represent the data such as the segmented keywords, 
and W=(ω0, ... , ωk) are weights to be learned. The keywords segmented from all responses 
of 391 students form the feature space and then each student’s response is a vector in the 

Figure 1. Mean absolute distance between 
raters at three grade levels. 

Figure 2. Mean absolute distance between each human 
rater and the average at three grade levels. 
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space. Using regression models with linear, quadratic, and RBF kernel to model the three 
raters’ grading data and the average grades, we have 12 automatic graders to be evaluated.  

The idea of including the average grades is for cutting down the random variation in 
human grading. The factors in human grading may be viewed as the following parts: 
keywords (in our consideration of automatic system), other common factors shared by 
raters, particular factors held by each rater, and random errors. Particular factors and 
random errors across raters are random variation for the average-trained model. Through 
averaging, the random variation is reduced and then we will have the best 
dataset-and-model matching pair, i.e. the best performance model.  
 
3. Evaluation 
 
The common practice to perform 10-fold cross-validation is used to evaluate automatic 
graders. The idea of this procedure is to divide the whole sample into 10 sub-datasets via 
stratified sampling over grades. The stratification keeps each sub-dataset representative in 
about the same proportion with the full dataset. Each sub-dataset is held out as the testing 
set in turn. The remaining nine subsets are combined as the training set. We obtain all 10 
subsets of predictions after 10 rounds; then the estimates of correlation and mean absolute 
error (MAE) are calculated on the whole dataset. 
 
3.1 Prediction error as a whole 
To begin with, we look at the overall prediction error. The statistic of MAE between actual 
grades of a rater and the predictions of the model trained through the rater is shown in 
Table 2. The MAEs range from 0.83 to 1.35; comparing to rater biases between human 
raters, the range is wider. The rater 1 and 3, and the average-trained model have similar 
prediction errors which are lower than the error of the rater 2-trained model no matter 
what kernel is. The prediction errors of quadratic and RBF kernel model are lower than 
linear model.  

The statistics of correlation are presented in Table 2 for reference. They range from 
0.70 to 0.86 that is similar to the inter-rater reliability between human raters. 

 
Table 2: Pearson correlation coefficient (r) and mean absolute error (MAE) between the actual 

grades and the predictions of the model trained through the rater or the average grades. 

Type of 
Kernel 

Index of 
performance Rater 1 Rater 2 Rater 3 Average 

r 0.71 0.70 0.80 0.81 Linear 
MAE 0.96 1.35 0.96 1.00 
r 0.78 0.79 0.83 0.85 Quadratic 
MAE 0.83 1.12 0.86 0.87 
r 0.78 0.78 0.85 0.86 RBF 
MAE 0.83 1.15 0.83 0.84 

 
3.2 Prediction error at different grade levels 
Now, we examine the prediction error at three grade levels, which are defined before. 
There are several findings as the following (Figure 3).  

First, no matter what kernel or rater is, the higher the grade level is, the larger the 
prediction error is.  

Secondly, three human-rater-trained models perform differently in prediction error at 
three grade levels. For example, the errors of models trained through rater 2 at low and 
middle grade-level are the highest. By contrast, at high grade-level rater 2-trained model 
has almost the same errors as the other two when the kernel is linear, and has smaller 
errors than the others when the kernel is quadratic and RBF. If we decide that the error of 
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Figure 3. Mean absolute error of the three raters and the average trained models at three grade levels. 
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high grade-level is the most important, the \model trained through the grades of rater 2 is 
better than the other two human-rater-trained models. 

Thirdly, the average-trained model always has the best performance. No matter what 
kernel is, the errors of this model at low and middle grade-level are lower than the errors 
of the rater 2-trained model and has no significant difference with the errors of the rater 1- 
and 3-trained model. In addition, the error of this model at high grade-level is much lower 
than the errors of the other three human-rater-trained models. However, if we only look at 
the whole prediction error, the average-trained model seems to be as good as the rater 1- 
and 3-trained model. 

Finally, there is a tendency that from linear, quadratic, to RBF kernel, the variance 
among the errors of the models at high grade-level expands. We may assume that for 
keyword-captured automatic grader dealing with the open-ended question in this study, the 
models with linear and quadratic kernel are relatively rater-insensitive. 
 
4. Conclusion 
 
In this study, through evaluating the automatic systems for an open-ended question asking 
for complex scientific explanation, we present the significance of examining the prediction 
error at grade levels and the influence of human raters as well as the average grades. 

For further understanding the influence of raters, future works include identifying the 
sources of rater biases and of prediction errors, investigating the way of weighting as 
averaging raters’ grades, and inspecting the differences in the most weighted keywords 
between rater-trained models. 
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