
1

An Intelligent User Interface for Architectural Walkthrough

Tsai-Yen Li (李蔡彥) and Hung-Kai Ting (丁竑愷)
Computer Science Department, National Chengchi University

64, Sec.2, Chih-Nan Road, Taipei, Taiwan 11623, ROC
e-mail: {li, s8420}@cs.nccu.edu.tw

Abstract

Due to the rapid evolution of graphics hardware,
interactive 3D graphics is becoming popular on desk-
top personal computers. However, it remains a chal-
lenging task for a novice user equipped with a 2D
mouse to navigate in an architectural environment
efficiently. We think the problem is partly due to the
fact that the level of navigation control that a user
needs to provide is too low. In this paper, we propose
a novel approach to improve the effectiveness and
efficiency of the 3D user interface for architecture
walkthrough. We adopt a path planner with probabil-
istic roadmap to help users avoid unnecessary ma-
neuvers due to collisions with the environment. We
modify a Java3D implementation of VRML browser
to incorporate the path planner into the user interface.
Experiments show that our implementation of path
planner is very efficient and can be seamlessly incor-
porated into the navigation control loop. The overall
navigation time for traversing a sequence of check-
points in a maze-like environment can be improved by
about a factor of two if the intelligent user interface is
used.

1. Introduction

Traditional Virtual Reality (VR) often refers to

immersive applications only. However, its definition
has become broader with the introduction of the Vir-
tual Reality Modeling Language (VRML) lan-
guage[23] and the browsers supporting this for-
mat[21][22]. Typically, these browsers are designed to
run on a regular desktop personal computer connected
to the network. The developments of this 3D standard
and 3D graphics acceleration hardware have greatly
sped up the evolution of interactive 3D graphics on
desktop PC’s. While this form of VR, which we shall
call desktop VR, is becoming prevalent, it is still a
great challenge to design a good user interface for a
novice user equipped only with a 2D mouse.

A typical VRML browser supports several naviga-
tion modes, such as WALK, FLY, EXAMINE, etc.,
and almost all browsers support the WALK mode for
applications such as architectural walkthrough. Most
of these browsers also support collision detection be-
tween the viewpoint and the environment to prevent
the viewpoint from penetrating the obstacles and to
increase the degree of realism. However, under such a
navigation mode, a user (even an expert user) often
runs into a situation where the controlled viewpoint

gets stuck at certain locations of the scene. It can nei-
ther move forward nor rotate at these locations with-
out moving backward first. Users often feel frustrated
with this kind of maneuvers especially when the
frame rate is not high enough for smooth, responsive
interactions.

We think the main problem is due to the facts that
the level of navigation control that a user need to pro-
vide is too low, and the frame rate for complex scenes
is still not high enough for precise control. There have
been interesting philosophical debates on designing an
intelligent user interface.[19] Direct manipulation has
been shown to be an effective metaphor for interface
design since the system behavior is more predictable
than the intelligent user interfaces based on agent
technologies. However, we think the premise for this
claim is that the user interface is responsive and the
control is not too tedious. This premise may not hold
for 3D interactive graphics because manipulating a
complex virtual scene with a 2D mouse may not be
efficient and definitely is not very intuitive for novice
users. However, we think the mouse inputs can actu-
ally reflect the user intention for moving direction, but
it is simply the problem that the user interface system
is not smart enough to compute a collision-free mo-
tion to the destination automatically.

In this paper, we propose a novel approach of using
efficient path planning algorithms in the control loop
of 3D interactions to compute collision-free maneuver
paths. We predict the locations where a user would
like to move to from the mouse input and compute a
collision-free path from the current configuration to a
predicted goal configuration. These paths will then be
followed by the viewpoint unless the user cancels the
motion voluntarily. We implemented an efficient ran-
domized roadmap planner that has been incorporate
into the user interface of a common VRML browser.
Our experiments carried out by users of various 3D
experiences show that the overall navigation time can
be significantly reduced with this intelligent user in-
terface.

We organize the rest of the paper as follows. We
will review some related researches in motion plan-
ning and intelligent user interface design in the next
section. We will then review the path-planning algo-
rithm with the randomized roadmap approach in Sec-
tion 3. In Section 4 we present our approach to the
problem of incorporating planning into the user inter-
face control loop. We will show the details of our im-
plementation in Section 5, and the experimental set-
tings, results, and analysis in Section 6. Finally, we
will conclude our work and discuss future extensions

Appear in Proc. of 12th IPPR Conf. on Computer Vision, Graphics, and Image Processing, P525-531, Taipei, 1999.

2

in the last section.

2. Related Work

The researches pertaining to our work fall into two

categories: 3D user interface design and path plan-
ning. Both problems require multidiscipline training
for producing in-depth research results. Traditionally,
the user interface design issues are addressed in the
field of computer graphics and the path planning
problem is studied mainly in Robotics.

2.1. 3D user interface design

User interface has been an indispensable compo-

nent in a computer system since the time computers
were invented. Many researches are undertaken to
invent new efficient ways to communicate with a
computer and on evaluating the effectiveness of these
interfaces. Among these interfaces, being capable of
interacting with virtual 3D environments has become
a design trend for future user interfaces. VR-types of
interfaces such as Head Mounted Display (HMD), 3D
tracking devices, data gloves, force feedback joysticks,
etc, are all good examples that are under active studies
and development. New metaphors such as eyeball in
hand, and flying vehicle in hand have been proposed
and tested.[3] It is reported that most users like the
idea of eyeball-in-hand metaphor in the context of
virtual space exploration. However, the great chal-
lenge comes when we are asked to manipulate a 3D
virtual scene only with a regular 2D mouse on a
desktop computer. Some work has been carried out to
design intuitive interfaces for controlling 3D rotations
with 2D devices.[6][16]

Most of these proposals use the direct manipulation
metaphor that is shown to be more comprehensible,
predictable, and controllable than the delegation types
of intelligent user interfaces in several application
domains. However, it is still under debates which
metaphor is more effective in general.[19] We think
there will not be a clear-cut answer to this question.
Instead, effectiveness would greatly depend on the
types of applications, users, and tasks at hand. For
example, some people may prefer to sit back and take
a guided tour when visiting a new environment while
other adventurous people may prefer to take the wheel
and have a full navigation control.

Although many intelligent user interfaces have
been proposed in the literature, most of them are not
for 3D manipulation.[13][15] Exceptions include us-
ing motion-planning techniques to provide task-level
controls. For example, Drucker and Zeltzer [4] argue
that a task-level viewpoint control is crucial for ex-
ploring virtual scenes such as virtual museums since
the users should be allowed to concentrate on scene
viewing instead of be distracted by low-level naviga-
tion controls. Li, et al. [11][12] also proposed an
auto-navigation system capable of generating cus-
tomized guided tour based on high-level user inputs.

Kuffner [8][9] also utilizes fast path planning tech-
niques to assist real-time animations. Other work also
suggests using vector fields [5] or force fields [20] to
guide animation. However, most of these approaches
use geometric reasoning techniques as a tool for con-
trol delegation. They use a third-person view to spec-
ify the desired tasks, which is very different from the
first-person view commonly used in the direct
manipulation metaphor.

2.2. Path planning

The path planning problem (or the so-called Piano

Mover’s Problem) has been well studied in the past
three decades. A good survey of path planning algo-
rithms can be found in [10]. It has been shown to be a
PSPACE-hard problem, and its computational com-
plexity is exponential in the degrees of freedom (DOF)
that the moving object has.[18] Due to the curse of
dimensionality, most efficient complete path planners
exist only for three or four dimensional configuration
space (C-space). The methods bases on artificial po-
tential fields are good examples that are reported to be
able to solve 2D path-planning problems in fractions
of a second.[2]

In the past few years, a new path planning scheme
called random sampling scheme for path planning is
reported to be effective in solving practical problems
in various applications with high dimensionalities.[1]
A special version of planner with this random sam-
pling scheme is called the probabilistic roadmap
method.[7][17] It spends a significant amount of time
to preprocess the connectivity information in the
C-space such that it can answer path-planning queries
afterward in a short amount of time. The type of plan-
ner is good for applications where static environments
can be assumed and several planning queries are
needed.

3. The Path Planner with Randomized
Roadmap

In this paper, we propose to incorporate the path

planning algorithms into the interface control loop to
assist user navigation with direct manipulation
(first-person view). Since the minimal frame rate for
interactive 3D navigation is about 10fps (frame per
second), it imposes a constraint on the acceptable time
that one can spend on planning at each control cycle.
This constraint will then limit the complexity of the
planning problem for our system. Therefore, in this
section we will describe the path-planning problem
we consider with reasonable assumptions. We will
also describe the randomized roadmap algorithm we
adopt and explain why it is adequate for our applica-
tion.

3.1. The path-planning problem

Instead of considering the general 3D interaction

3

problem, we only consider the application of archi-
tecture walkthrough. Almost all of the 3D browsers
available in the public domain support this type of
navigation mode. It is called the WALK mode in most
VRML browsers. In architecture walkthrough, we can
reasonably assume that the viewpoint stays on a hori-
zontal plane. Therefore the virtual camera (represent-
ing the viewpoint) and the obstacles in the virtual en-
vironment can be reasonably represented by 2D
polygons. The virtual camera can move freely in the
plane and therefore possesses 3 DOF.

Many efficient path planners are reported to be
able to compute a collision-free path in fractions of a
second for environments of reasonable complexity.
These planners fall into two categories: one-shot and

many-shot. One-shot planners do not make assump-
tions about the environment and simply take the world
description at run time. However, it might take a few
seconds in the worst case for these planners to come
up with a collision-free path. On the other hand, the
many-shot planners, such as the randomized roadmap
planner adopted in our system, may spend a reason-
able amount of time initially in preprocessing the con-
figuration space for future path-planning queries.
These planners usually assume that the environment
does not change frequently; otherwise, they will need
to redo the preprocessing step whenever the environ-
ment changes. The planning times for these planners
are better bounded since the planning problem can
usually be reduced to only a graph search problem at
run time. Therefore, this type of planners is more
suitable for real-time user interactions.

3.2. The randomized roadmap planner

The path planner with the randomized roadmap

approach, which we shall call the roadmap planner,
belongs to the category of many-shot planners. It con-
sists of two phases: learning phase and query phase.
In the learning phase, the planner samples the C-space
and builds a connectivity graph for the freespace (the
set of collision-free configurations). Several strategies
have been proposed in the robotics literature to per-
form the sampling. After enough configurations are
sampled in the freespace, the planner will try to con-
nect nearby configurations with a simple path com-
puted by a local planner. The result is a connectivity
graph capturing the topological structure of the
freespace. An example of the roadmap is shown in
Figure 1. This graph consists of 512 nodes connected
in a 3D C-space. However, for clarity, the graph in
Figure 1 is drawn directly in the 2D workspace by
ignoring the orientation component of a configuration.

In the query phase, the planner is given a pair of
configurations (the initial and goal configurations,
denoted by qi and qg, respectively) and is asked to find
a collision-free path connecting them. The roadmap
planner will first try to connect qi and qg to any nodes,
say qi’ and qg’, respectively, in the connectivity graph
and then search the graph for a path connecting qi’ and

qg’. The path connecting qi and qg can then be con-
structed by concatenating path segments generated by
the deterministic local planner. Since the graph search
does not involve any expensive collision checks and
the number of nodes in the graph is relatively small,
the search time is usually quite small. A
post-processing step is then applied to this path in
order to produce a shorter and smoother path.

There exist several empirical parameters that one
can tune to produce good results efficiently. For ex-
ample, the required number of sampled configurations
might be different case by case. The more configura-
tions are sampled and connected, the more time needs
to be spent on the graph search, and also the more
likely two configurations can be successfully con-
nected. In addition, since the planner is probabilistic
in nature, there could exist cases where the planner
fails to find a feasible path that actually exists. How-
ever, for the user interface application we consider in
this paper, we use the planner only as navigation as-
sistance. Occasional failures do not cause fatal effects
on the user interface. In fact, most of the planning
problem instances encountered in this application are
not very difficult. We would usually prefer an early
failure instead of a long-waiting success since it might
cause undesirable congestion in navigation control.

4. Intelligent 3D User Interface

4.1. The traditional user control loop

In an interactive 3D graphics program, such as a

VRML browser, a user specifies his/her navigation
commands through a 2D mouse. A typical program
flow for a VRML browser consists of two threads:

input and animation. The user-input thread is event
driven while the animation thread is busy looping. A
typical operation would require the user to drag a
vector in the browser to represent the viewpoint ve-
locity vector v. This velocity vector in the canvas
space will be decomposed into a horizontal and a ver-
tical component. The horizontal component, vx, often
refers to the rotational velocity while the vertical

Figure 1: a sample probabilistic roadmap

qi’

qi

qg’

qg

4

component, vy, often means the linear velocity along
the forward direction. The input thread updates this
motion vector whenever the mouse is dragged.

On the other hand, the animation thread loops in-
definitely to perform configuration updates based on
this velocity vector and then render the scene accord-
ing to the updated viewpoint. In order to perform
real-time navigation such that the distance traveled
will not depend on the speed of the computer, the
browser will multiply vx and vy by the time interval δ t
between two frame updates to obtain the displacement
transformation T. The displacement transformation
will then be multiplied to the current configuration qi
to obtain the next viewpoint configuration qg (qg = T x
qi). Let d denote the translation vector between qi and
qg. For browsers with collision-detection capability,
potential collisions are checked along the line seg-
ment of d. If a potential collision might result from
the movement, the viewpoint update will not be per-
formed. This is the situation when the user gets stuck
at a certain location. It is very often that the user has
to move backward first in order to escape the trapping
situation.

4.2. Predicting user intention

In our system, we propose to modify the animation

loop such that the system will not give up movements
in the situations where potential collisions might hap-
pen. Instead, the system will try to find a colli-
sion-free path for the viewpoint to follow whenever
collisions are detected. We achieve this by maintain-
ing a queue of collision-free configurations in the
animation loop. Whenever the queue becomes empty,
the system will try to fill the queue by generating a
collision-free path according to the current velocity
vector.

Now the problem becomes how the system predicts
the intention of the user implied by the vector v. In
other words, how does the system specify qg in order
to define an appropriate path-planning problem? The-
re are three main cases to consider according to the
legality of qg and how it should be adjusted. These
cases, depicted in Figure 2, are described as follows.

A. No modification: the projected qg is legal, such

as the A1 and A2 cases.

B. Direct modification: the projected qg is illegal
but it can be modified along d to become colli-
sion-free, such as the B1 and B2 cases. In our
current system, qg will be set to the first free
configuration across the obstacle whenever pos-
sible (the B2 case). If not possible, it will be set
to the farthest free configuration along d (the B1
case).

C. Indirect modification: the projected qg is illegal
but there exist no legal configurations along d
(the C case). In this case, qi already touches the
obstacle boundary, and there are no legal qg
along the current forward direction. Therefore,

qg must be moved out of d. In our current system,
we place qg on the tangential component of d
along the obstacle boundary.

By predicting the intention of the user, the system
tries to move qg to a nearby free configuration ac-
cording to d. With these possible modifications, the
path-planning problem for the user interface can then
be clearly defined.

4.3. Computing smooth maneuver paths

After an appropriate goal is chosen, three types of

results may be produced:
I. Trivial path: there exist no obstacles between

qi and qg, and therefore a trivial straight-line
path would be sufficient. For instance, cases
A1, B1’, and C’ shown in Figure 2 all result in
straight-line paths.

II. Non-trivial path: there is no straight-line path
between qi and qg and therefore the path plan-
ner described in the previous section needs to
be called to compute a feasible path. If a path
is found, it will be smoothed and appropriately
parameterized before putting to the configura-
tion queue in the animation loop for execution.

III. No path: although both qi and qg are colli-
sion-free, the path planner fails to find a colli-
sion-free path connecting them. The configura-
tion queue in the animation loop will remain
empty, and no actions will be taken.

A user is allowed to intercept the execution of the
path at any time by giving the system a cue such as
releasing the mouse buttons or making a sharp turn.
These cues should be consistent with conventions
used in normal navigation operations. In the current
system, when a path τ is generated, we also record the
dragged vector vτ associated with τ. If the current
vector v deviates from vτ for a certain threshold, the
configuration queue in the animation loop will be
flushed to empty, and the path is recomputed. Releas-
ing the mouse buttons is treated as special case where

v becomes null.

5. Implementation

5.1. Connecting to a VRML browser

Figure 2: possible goal configurations and their
modifications

A1

current
viewpoint

B1

C
obstacles

B2’

B1’

C’

5

In order to make the research result be more port-

able in the future, we choose to modify the open sour-
ce VRML browser implemented based on the Java3D
SDK library. This SDK and the VRML browser are
all available for FTP on the public domain.[24] In
these programs, we have mainly modified the routine
for processing mouse event and the routine for up-
dating the next viewpoint configuration. At the time
of our implementation, this VRML browser does not
support collision detection yet. Therefore, we have
enhanced the browser with our implementation of
collision detection routines. They are called in the
viewpoint update routine to prevent potential colli-
sions even when the path planner is not used.

5.2. The randomized roadmap planner

The roadmap planner has been implemented in the

Java language. Two files are read by the system. The
VRML browser reads in the VRM L model of archi-
tectural environment, while the path planner reads in
the corresponding 2D data file describing obstacle
configurations. A separated maze editor has also been
implemented to create both files consistently.

When the system starts up, we pre-compute the
C-space obstacles with a well-known linear-time al-
gorithm.[14] We store this information in a 3D bitmap
of 128x128x128 for future collision detection lookups.
In the learning phase of the roadmap planner, we per-
form a uniform sampling in the C-space. We uni-
formly divide the space into 8x8x8=512 regions and
randomly sample up to four free configurations in
each region. The system gives up sampling on a re-

gion after 20 trials. After the sampling step, the sys-
tem will try to connect all pairs of nodes in the same
or neighboring regions with collision-free straight-line
paths. Therefore, there are up to 1024 interconnected
nodes in the roadmap after the learning phase.

In the query phase, we first connect qi and qg to
some nodes qi‘ and qg‘ in the roadmap graph, respec-
tively. Close nodes are tried first. After these starting
and ending nodes in the graph are found, we use a
modified A* algorithm to search for a path connecting
these two nodes. If a feasible path in the graph is
found, the straight-line segments along the graph path
will then be concatenated to form the final geometric
path. A smoothing routine will then be called to re-
duce the path length and increase its quality.

6. Experiments

Ten people were invited to test the implemented

system. Eight of them are undergraduate students. Six
of them major in Computer Science but only two use
VRML browsers frequently. The other two testers do
not use computers regularly. They are given a short
instruction about how to use the browser and three
minutes to warm up before the experiments start. In
order to compare the effects of incorporating planning
into the system, an experiment consists of two runs
(with and without planning) of the same task sequence.
In order to avoid unnecessary biases created by prac-
tice time, the run with planning is always done first.

6.1. Experimental settings

The experiments were carried out on a regular PC

with a Celeron 300A processor. The experimental
scenario consists of six checkpoints in a maze-like
environment for a user to visit sequentially. A top
view of this environment is shown in Figure 3. The
user navigates in the maze with a first-person view
and the WALK mode provided by the VRML browser.
A bouncing ball is used to help the users identify the
targeting checkpoint. An example of the rendered 3D
scene is shown in Figure 4. In order to assist the user
in finding the next checkpoint, we also provide a
2D-layout map, as shown in Figure 5, at the side of

Figure 5: a 2D-layout map of the maze

Figure 3: top view of the maze environment

Figure 4: a snapshot of the VRML browser

A

B C

D

start
location

F E

6

the VRML browser window. In each experiment, a
user has to move the viewpoint from checkpoint A
through checkpoint F as quickly as possible.

6.2. Experimental results

The experimental results consist of two parts: ob-

jective statistic data and subjective user comments.
The comparisons of the system with and without
planning are summarized in Table 1. The numbers are
based on the average of the ten testers. The overall
times taken to complete the requested task are 243
and 421 seconds, respectively, for the system run with
and without planning. The performance speedup for
the interface with planning is about 73%. In term of
movement steps, about one third of the steps are saved
after the planner is used. The cost to pay is that the
system has to spend about 2.5 seconds in total to pre-
process a given environment and about an average of
additional 11.5 ms in each step to determine the next
viewpoint configuration. (It still takes some time for
the interface without planning to detect collisions.)
The overall extra time spent on planning only consists
of 6.21% of the overall execution time.

The subjective user feedback for the user interface
with planning is positive in general. Some of the users
may find the viewpoint hard to control in the begin-
ning (especially for those who like to play games with
keyboards) but all of them can get used to the control
very soon. Once they are in a good command of the
interface, navigation efficiency is greatly improved. In
summary, they all regard the path-planning capability

as a very considerate and desirable feature for a 3D
VRML browser.

6.3. Analysis

In order to understand how path planning is used in

our walkthrough experiments, we take a closer look at
the statistic data collected from the ten experiments,
as listed in Table 2. The number n1 in the second co-
lumn is the number of paths (including type I and type
II paths in subsection 4.3) and n2 is the number of
steps generated for execution during an experiment.
Although the number of calls to the path planner (n4)
is not very high, total number of steps (n3) in these
nontrivial paths constitutes a great portion (about one
third) of n2. Typical paths generated by the planner,
depicted as sequences of dots, are shown in Figure 6.
The numbers beside the paths are their lengths. Dur-
ing the navigation, some paths (trivial or nontrivial)
(n5) were cancelled due to significant deviation from
the original user intention. The total time spent on
path searching in the roadmap planner (t1) is only a
small portion of the overall execution time (t2). Com-
pared to the execution time for the interface without
planning (t3), the intelligent user interface with plan-
ning indeed results in very consistent and significant
improvements.

7. Conclusions and Future Work

In this paper, we have proposed a novel approach

to design an intelligent user interface for architectural
walkthrough applications. A path planner with a ran-
domized roadmap approach is used to assist users in
navigating through difficult areas where the users of-
ten get stuck with the traditional user interface. This
planner has been successfully integrated with the
low-level control loop in a VRML browser. Our pre-
liminary experimental results show that, with the help
of the planner, the overall navigation time can be con-
sistently and significantly saved. We believe that this

 w/ planning w/o planning
total execution time(sec) 243 421
no of navigation steps 2498 3941
preprocessing time (sec) 2.5 0
avg. time for computing
the next step (ms)

18.9 7.4

Table 1: comparison of walkthrough efficiency
with or without path planning

 n1 n2 n3 n4 n5 t1 t2 t3
u1 746 1644 888 30 19 2.01 129.4 281.5
u2 790 1592 773 36 17 1.44 124.9 287.5
u3 908 1653 736 65 50 3.05 209.2 471.4
u4 1476 2592 1117 87 63 3.15 220.5 427.7
u5 2737 3106 361 36 13 0.98 239.9 332.1
u6 2451 3070 640 36 14 1.30 261.4 335.5
u7 2091 2430 295 72 84 3.39 249.4 332.1
u8 1430 2419 972 59 39 2.66 238.1 585.2
u9 1861 2988 1024 104 93 4.25 370.9 514.8

u10 2942 3486 523 50 23 1.61 384.9 607.4
avg. 1743 2498 733 58 42 2.38 242.9 420.7

n1: no of generated paths n2: no of generated steps
n3: no of planner generated steps n4: no of planning called
n5: no of paths being cancelled during their executions
t1: total path-planning time (sec)
t2: total execution time with planning (sec)
t3: total execution time without planning (sec)

Table 2: statistic data of ten users using the intelli-
gent interface

Figure 6: planner generated non-trivial paths

A

B

C

D

7

intelligent user interface is effective because it dele-
gate some of the geometric reasoning tasks to the
computer while retaining the advantages of direct
manipulation.

There exist limitations on our current implementa-
tion. For example, we currently assume a static and
bounded workspace in our path planner to facilitate
roadmap construction. However, it is more desirable
(for path planning in general) to be able to consider
dynamic and unbounded workspace possibly with
incremental roadmap construction. The effect of path
planning on the walkthrough type of 3D interface de-
sign deserves further studies. For example, more ex-
periments need to be carried out for different tasks, on
different virtual scenes, and on different systems of
various computing powers. We believe that the effects
will even more significant for complex scenes on
slower machines.

Acknowledgments

This work was partially supported by grants from
National Science Council under contacts NSC
88-2815-C-004-001-E and NSC 88-2218-E-004-002.

References

[1] J. Barraquand, L. Kavraki, J.C. Latombe, T.Y. Li, and

P. Raghavan, “A Random Sampling Scheme for Path
Planning,” in International Journal of Robotics Re-
search, 16(6), P759-774, December, 1997.

[2] J. Barraquand and J. Latombe, “Robot Motion Plan-
ning: A Distributed Representation Approach,” Inter-
national Journal of Robotics Research, 10:628-649,
1991.

[3] Chen, Mountford, and Sellen, “A Study in Interactive
3D Rotation Using 2D Control Devices,” Computer
Graphics, 22(4):121-128 ,1988.

[4] S. M. Drucker and D. Zeltzer, “Intelligent Camera
Control in a Virtual Environment,” Graphics Inter-
face’94, pp. 190-199, 1994.

[5] P. K. Egbert, and S. H. Winkler, “Collision-Free Ob-
ject Movement Using Vector Fields,” in IEEE Com-
puter Graphics and Applications, 16(4):18-24, July,
1996.

[6] M.R. Jung, D. Paik, D. Kim, “A Camera Control In-
terface Based on the Visualization of Subspaces of the
6D Motion Space of the Camera,” in Proceedings of
IEEE Pacific Graphics’98, 1998.

[7] L. Kavraki, P.Svestka, J. Latombe, and M. Overmars,
“Probabilistic Roadmaps for Fast Path Planning in
High-Dimensional Configuration Spaces,” IEEE
Transaction on Robotics and Automation, 12:566-580,
1996.

[8] J.J. Kuffner. "Goal-Directed Navigation for Animated
Characters Using Real-Time Path Planning and Con-
trol". In Proceedings of CAPTECH '98: Workshop on
Modelling and Motion Capture Techniques for Virtual
Environments, Geneva, Switzerland, Nov. 26-28,
1998.

[9] J.J. Kuffner and J.C. Latombe. "Fast Synthetic Vision,

Memory, and Learning Models for Virtual Humans".
In Proceedings of CA '99: IEEE International Con-
ference on Computer Animation, Geneva, Switzerland,
May 26-29, 1999.

[10] J. Latombe, Robot Motion Planning, Kluwer, Boston,
MA, 1991.

[11] T.Y. Li, L.K. Gan, and C.F. Su, “Generating Custom-
izable Guided Tours for Networked Virtual Environ-
ment,” in Proceedings of 1997 National Computer
Symposium (NCS’97), Taichung. Dec.1997.

[12] T.Y. Li, J.M. Lien, S.Y. Chiu, and T.H. Yu, “Auto-
matically Generating Virtual Guided Tours,” in Pro-
ceedings of the Computer Animation '99 Conference,
Geneva, Switzerland, pp99-106, May 1999.

[13] H. Lieberman, “Integrating User Interface Agents
with Conventional Applications,” in Proceedings of
ACM Conference on Intelligent User Interfaces, San
Francisco, January 1998.

[14] T. Lozano-Perez, “Spatial Planning: A Configuration
Space Approach,” in IEEE Transactions on Com-
puters, 32(2):108-120, 1983.

[15] M. Maybury and W. Wahster (eds), Readings in Intel-
ligent User Interfaces, Morgan Kaufmann: Menlo
Park, CA.

[16] Neilson and Olsen, “Direct Manipulation Techniques
for 3D Objects Using 2D Locator Devices,” in Pro-
ceedings of the 1986 Workshop on Interactive 3D
Graphics, pp 175-182, 1986.

[17] M. Overmars, and P. Svestka, “A Probabilistic Learn-
ing Approach to Motion Planning,” in the Proceedings
of the 1994 Workshop on the Algorithmic Foundations
of Robotics, pp19-37, 1994.

[18] J.H. Reif, “Complexity of the Mover's Problem and
Generalizations,” in Proceedings of the 20th IEEE
Symposium on Foundations of Computer Science, pp.
421-427, 1979.

[19] B. Shneiderman and P. Maes, “Direct Manipulation vs.
Interface Agents,” Interactions, 4(6): 42-61, Nov./Dec.
1997.

[20] D. Xiao, R. Hubbold, “Navigation Guided by Artifi-
cial Force Fields, “ in Proceedings of the ACM
CHI’98 Conference, pp179-186, 1998.

[21] WorldView VRML browser, URL:
http://www.intervista.com/

[22] CosmoPlayer VRML browser, URL:
http://www.cosmosoftware.com/

[23] VRML97 International Standard, URL:
http://www.web3d.org/technicalinfo/specifications/vr
ml97/index.htm

[24] The Java3D and VRML working group,
http://www.vrml.org/WorkingGroups/vrml-java3d/

