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Abstract 
 

Due to the rapid evolution of graphics hardware, 
interactive 3D graphics is becoming popular on desk-
top personal computers. However, it remains a chal-
lenging task for a novice user equipped with a 2D 
mouse to navigate in an architectural environment 
efficiently. We think the problem is partly due to the 
fact that the level of navigation control that a user 
needs to provide is too low. In this paper, we propose 
a novel approach to improve the effectiveness and 
efficiency of the 3D user interface for architecture 
walkthrough. We adopt a path planner with probabil-
istic roadmap to help users avoid unnecessary ma-
neuvers due to collisions with the environment. We 
modify a Java3D implementation of VRML browser 
to incorporate the path planner into the user interface. 
Experiments show that our implementation of path  
planner is very efficient and can be seamlessly incor-
porated into the navigation control loop. The overall 
navigation time for traversing a sequence of check-
points in a maze-like environment can be improved by 
about a factor of two if the intelligent user interface is 
used.  
 

1. Introduction 
 
Traditional Virtual Reality (VR) often refers to 

immersive applications only. However, its definition 
has become broader with the introduction of the Vir-
tual Reality Modeling Language (VRML) lan-
guage[23] and the browsers supporting this for-
mat[21][22]. Typically, these browsers are designed to 
run on a regular desktop personal computer connected 
to the network. The developments of this 3D standard 
and 3D graphics acceleration hardware have greatly 
sped up the evolution of interactive 3D graphics on 
desktop PC’s. While this form of VR, which we shall 
call desktop VR, is becoming prevalent, it is still a 
great challenge to design a good user interface for a 
novice user equipped only with a 2D mouse.  

A typical VRML browser supports several naviga-
tion modes, such as WALK, FLY, EXAMINE, etc., 
and almost all browsers support the WALK mode for 
applications such as architectural walkthrough. Most 
of these browsers also support collision detection be-
tween the viewpoint and the environment to prevent 
the viewpoint from penetrating the obstacles and to 
increase the degree of realism. However, under such a 
navigation mode, a user (even an expert user) often 
runs into a situation where the controlled viewpoint 

gets stuck at certain locations of the scene. It can nei-
ther move forward nor rotate at these locations with-
out moving backward first. Users often feel frustrated 
with this kind of maneuvers especially when the 
frame rate is not high enough for smooth, responsive 
interactions.  

We think the main problem is due to the facts that 
the level of navigation control that a user need to pro-
vide is too low, and the frame rate for complex scenes 
is still not high enough for precise control. There have 
been interesting philosophical debates on designing an 
intelligent user interface.[19] Direct manipulation has 
been shown to be an effective metaphor for interface 
design since the system behavior is more predictable 
than the intelligent user interfaces based on agent 
technologies. However, we think the premise for this 
claim is that the user interface is responsive and the 
control is not too tedious. This premise may not hold 
for 3D interactive graphics because manipulating a 
complex virtual scene with a 2D mouse may not be 
efficient and definitely is not very intuitive for novice 
users. However, we think the mouse inputs can actu-
ally reflect the user intention for moving direction, but 
it is simply the problem that the user interface system 
is not smart enough to compute a collision-free mo-
tion to the destination automatically.  

In this paper, we propose a novel approach of using 
efficient path planning algorithms in the control loop 
of 3D interactions to compute collision-free maneuver 
paths. We predict the locations where a user would 
like to move to from the mouse input and compute a 
collision-free path from the current configuration to a 
predicted goal configuration. These paths will then be 
followed by the viewpoint unless the user cancels the 
motion voluntarily. We implemented an efficient ran-
domized roadmap planner that has been incorporate 
into the user interface of a common VRML browser. 
Our experiments carried out by users of various 3D 
experiences show that the overall navigation time can 
be significantly reduced with this intelligent user in-
terface.  

We organize the rest of the paper as follows. We 
will review some related researches in motion plan-
ning and intelligent user interface design in the next 
section. We will then review the path-planning algo-
rithm with the randomized roadmap approach in Sec-
tion 3. In Section 4 we present our approach to the 
problem of incorporating planning into the user inter-
face control loop. We will show the details of our im-
plementation in Section 5, and the experimental set-
tings, results, and analysis in Section 6. Finally, we 
will conclude our work and discuss future extensions 
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in the last section.   
 

2. Related Work 
 
The researches pertaining to our work fall into two 

categories: 3D user interface design and path plan-
ning. Both problems require multidiscipline training 
for producing in-depth research results. Traditionally, 
the user interface design issues are addressed in the 
field of computer graphics and the path planning 
problem is studied mainly in Robotics.  
 

2.1. 3D user interface design 
 
User interface has been an indispensable compo-

nent in a computer system since the time computers 
were invented. Many researches are undertaken to 
invent new efficient ways to communicate with a 
computer and on evaluating the effectiveness of these 
interfaces. Among these interfaces, being capable of 
interacting with virtual 3D environments has become 
a design trend for future user interfaces. VR-types of 
interfaces such as Head Mounted Display (HMD), 3D 
tracking devices, data gloves, force feedback joysticks, 
etc, are all good examples that are under active studies 
and development. New metaphors such as eyeball in 
hand, and flying vehicle in hand have been proposed 
and tested.[3] It is reported that most users like the 
idea of eyeball-in-hand metaphor in the context of 
virtual space exploration. However, the great chal-
lenge comes when we are asked to manipulate a 3D 
virtual scene only with a regular 2D mouse on a 
desktop computer. Some work has been carried out to 
design intuitive interfaces for controlling 3D rotations 
with 2D devices.[6][16]  

Most of these proposals use the direct manipulation 
metaphor that is shown to be more comprehensible, 
predictable, and controllable than the delegation types 
of intelligent user interfaces in several application 
domains. However, it is still under debates which 
metaphor is more effective in general.[19] We think 
there will not be a clear-cut answer to this question. 
Instead, effectiveness would greatly depend on the 
types of applications, users, and tasks at hand. For 
example, some people may prefer to sit back and take 
a guided tour when visiting a new environment while 
other adventurous people may prefer to take the wheel 
and have a full navigation control.  

Although many intelligent user interfaces have 
been proposed in the literature, most of them are not 
for 3D manipulation.[13][15] Exceptions include us-
ing motion-planning techniques to provide task-level 
controls. For example, Drucker and Zeltzer [4] argue 
that a task-level viewpoint control is crucial for ex-
ploring virtual scenes such as virtual museums since 
the users should be allowed to concentrate on scene 
viewing instead of be distracted by low-level naviga-
tion controls. Li, et al. [11][12] also proposed an 
auto-navigation system capable of generating cus-
tomized guided tour based on high-level user inputs. 

Kuffner [8][9] also utilizes fast path planning tech-
niques to assist real-time animations. Other work also 
suggests using vector fields [5] or force fields [20] to 
guide animation. However, most of these approaches 
use geometric reasoning techniques as a tool for con-
trol delegation. They use a third-person view to spec-
ify the desired tasks, which is very different from the 
first-person view commonly used in the direct 
manipulation metaphor.  

 

2.2. Path planning 
 
The path planning problem (or the so-called Piano 

Mover’s Problem) has been well studied in the past 
three decades. A good survey of path planning algo-
rithms can be found in [10]. It has been shown to be a 
PSPACE-hard problem, and its computational com-
plexity is exponential in the degrees of freedom (DOF) 
that the moving object has.[18] Due to the curse of 
dimensionality, most efficient complete path planners 
exist only for three or four dimensional configuration 
space (C-space). The methods bases on artificial po-
tential fields are good examples that are reported to be 
able to solve 2D path-planning problems in fractions 
of a second.[2]  

In the past few years, a new path planning scheme 
called random sampling scheme for path planning is 
reported to be effective in solving practical problems 
in various applications with high dimensionalities.[1] 
A special version of planner with this random sam-
pling scheme is called the probabilistic roadmap 
method.[7][17] It spends a significant amount of time 
to preprocess the connectivity information in the 
C-space such that it can answer path-planning queries 
afterward in a short amount of time. The type of plan-
ner is good for applications where static environments 
can be assumed and several planning queries are 
needed.  

 

3. The Path Planner with Randomized 
Roadmap 
 
In this paper, we propose to incorporate the path 

planning algorithms into the interface control loop to 
assist user navigation with direct manipulation 
(first-person view). Since the minimal frame rate for 
interactive 3D navigation is about 10fps (frame per 
second), it imposes a constraint on the acceptable time 
that one can spend on planning at each control cycle. 
This constraint will then limit the complexity of the 
planning problem for our system. Therefore, in this 
section we will describe the path-planning problem 
we consider with reasonable assumptions. We will 
also describe the randomized roadmap algorithm we 
adopt and explain why it is adequate for our applica-
tion.  

 

3.1. The path-planning problem 
 
Instead of considering the general 3D interaction 
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problem, we only consider the application of archi-
tecture walkthrough. Almost all of the 3D browsers 
available in the public domain support this type of 
navigation mode. It is called the WALK mode in most 
VRML browsers. In architecture walkthrough, we can 
reasonably assume that the viewpoint stays on a hori-
zontal plane. Therefore the virtual camera (represent-
ing the viewpoint) and the obstacles in the virtual en-
vironment can be reasonably represented by 2D 
polygons. The virtual camera can move freely in the 
plane and therefore possesses 3 DOF.  

Many efficient path planners are reported to be 
able to compute a collision-free path in fractions of a 
second for environments of reasonable complexity. 
These planners fall into two categories: one-shot and 

many-shot. One-shot planners do not make assump-
tions about the environment and simply take the world 
description at run time. However, it might take a few 
seconds in the worst case for these planners to come 
up with a collision-free path. On the other hand, the 
many-shot planners, such as the randomized roadmap 
planner adopted in our system, may spend a reason-
able amount of time initially in preprocessing the con-
figuration space for future path-planning queries. 
These planners usually assume that the environment 
does not change frequently; otherwise, they will need 
to redo the preprocessing step whenever the environ-
ment changes. The planning times for these planners 
are better bounded since the planning problem can 
usually be reduced to only a graph search problem at 
run time. Therefore, this type of planners is more 
suitable for real-time user interactions. 

 
3.2. The randomized roadmap planner 

 
The path planner with the randomized roadmap 

approach, which we shall call the roadmap planner, 
belongs to the category of many-shot planners. It con-
sists of two phases: learning phase and query phase. 
In the learning phase, the planner samples the C-space 
and builds a connectivity graph for the freespace (the 
set of collision-free configurations). Several strategies 
have been proposed in the robotics literature to per-
form the sampling. After enough configurations are 
sampled in the freespace, the planner will try to con-
nect nearby configurations with a simple path com-
puted by a local planner. The result is a connectivity 
graph capturing the topological structure of the 
freespace. An example of the roadmap is shown in 
Figure 1. This graph consists of 512 nodes connected 
in a 3D C-space. However, for clarity, the graph in 
Figure 1 is drawn directly in the 2D workspace by 
ignoring the orientation component of a configuration.  

In the query phase, the planner is given a pair of 
configurations (the initial and goal configurations, 
denoted by qi and qg, respectively) and is asked to find 
a collision-free path connecting them. The roadmap 
planner will first try to connect qi and qg to any nodes, 
say qi’ and qg’, respectively, in the connectivity graph 
and then search the graph for a path connecting qi’ and 

qg’. The path connecting qi and qg can then be con-
structed by concatenating path segments generated by 
the deterministic local planner. Since the graph search 
does not involve any expensive collision checks and 
the number of nodes in the graph is relatively small, 
the search time is usually quite small. A 
post-processing step is then applied to this path in 
order to produce a shorter and smoother path. 

There exist several empirical parameters that one 
can tune to produce good results efficiently. For ex-
ample, the required number of sampled configurations 
might be different case by case. The more configura-
tions are sampled and connected, the more time needs 
to be spent on the graph search, and also the more 
likely two configurations can be successfully con-
nected. In addition, since the planner is probabilistic 
in nature, there could exist cases where the planner 
fails to find a feasible path that actually exists. How-
ever, for the user interface application we consider in 
this paper, we use the planner only as navigation as-
sistance. Occasional failures do not cause fatal effects 
on the user interface. In fact, most of the planning 
problem instances encountered in this application are 
not very difficult. We would usually prefer an early 
failure instead of a long-waiting success since it might 
cause undesirable congestion in navigation control. 

 

4. Intelligent 3D User Interface 
 

4.1. The traditional user control loop 
 
In an interactive 3D graphics program, such as a 

VRML browser, a user specifies his/her navigation 
commands through a 2D mouse. A typical program 
flow for a VRML browser consists of two threads: 

input and animation. The user-input thread is event 
driven while the animation thread is busy looping. A 
typical operation would require the user to drag a 
vector in the browser to represent the viewpoint ve-
locity vector v. This velocity vector in the canvas 
space will be decomposed into a horizontal and a ver-
tical component. The horizontal component, vx, often 
refers to the rotational velocity while the vertical 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: a sample probabilistic roadmap  
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component, vy, often means the linear velocity along 
the forward direction. The input thread updates this 
motion vector whenever the mouse is dragged.  

On the other hand, the animation thread loops in-
definitely to perform configuration updates based on 
this velocity vector and then render the scene accord-
ing to the updated viewpoint. In order to perform 
real-time navigation such that the distance traveled 
will not depend on the speed of the computer, the 
browser will multiply vx and vy by the time interval δ t 
between two frame updates to obtain the displacement 
transformation T.  The displacement transformation 
will then be multiplied to the current configuration qi 
to obtain the next viewpoint configuration qg (qg = T x 
qi). Let d denote the translation vector between qi and 
qg. For browsers with collision-detection capability, 
potential collisions are checked along the line seg-
ment of d.  If a potential collision might result from 
the movement, the viewpoint update will not be per-
formed. This is the situation when the user gets stuck 
at a certain location. It is very often that the user has 
to move backward first in order to escape the trapping 
situation.  

 

4.2. Predicting user intention 
 
In our system, we propose to modify the animation 

loop such that the system will not give up movements 
in the situations where potential collisions might hap-
pen. Instead, the system will try to find a colli-
sion-free path for the viewpoint to follow whenever 
collisions are detected. We achieve this by maintain-
ing a queue of collision-free configurations in the 
animation loop. Whenever the queue becomes empty, 
the system will try to fill the queue by generating a 
collision-free path according to the current velocity 
vector.  

Now the problem becomes how the system predicts 
the intention of the user implied by the vector v. In 
other words, how does the system specify qg in order 
to define an appropriate path-planning problem? The-
re are three main cases to consider according to the 
legality of qg and how it should be adjusted. These 
cases, depicted in Figure 2, are described as follows. 

A. No modification: the projected qg is legal, such 

as the A1 and A2 cases. 

B. Direct modification: the projected qg is illegal 
but it can be modified along d to become colli-
sion-free, such as the B1 and B2 cases. In our 
current system, qg will be set to the first free 
configuration across the obstacle whenever pos-
sible (the B2 case). If not possible, it will be set 
to the farthest free configuration along d (the B1 
case). 

C. Indirect modification: the projected qg is illegal 
but there exist no legal configurations along d 
(the C case). In this case, qi already touches the 
obstacle boundary, and there are no legal qg 
along the current forward direction. Therefore, 

qg must be moved out of d. In our current system, 
we place qg on the tangential component of d 
along the obstacle boundary.  

By predicting the intention of the user, the system 
tries to move qg to a nearby free configuration ac-
cording to d. With these possible modifications, the 
path-planning problem for the user interface can then 
be clearly defined.  

 

4.3. Computing smooth maneuver paths 
 
After an appropriate goal is chosen, three types of 

results may be produced: 
I. Trivial path: there exist no obstacles between 

qi and qg, and therefore a trivial straight-line 
path would be sufficient. For instance, cases 
A1, B1’, and C’ shown in Figure 2 all result in 
straight-line paths. 

II. Non-trivial path: there is no straight-line path 
between qi and qg and therefore the path plan-
ner described in the previous section needs to 
be called to compute a feasible path. If a path 
is found, it will be smoothed and appropriately 
parameterized before putting to the configura-
tion queue in the animation loop for execution. 

III. No path: although both qi and qg are colli-
sion-free, the path planner fails to find a colli-
sion-free path connecting them. The configura-
tion queue in the animation loop will remain 
empty, and no actions will be taken. 

A user is allowed to intercept the execution of the 
path at any time by giving the system a cue such as 
releasing the mouse buttons or making a sharp turn. 
These cues should be consistent with conventions 
used in normal navigation operations. In the current 
system, when a path τ is generated, we also record the 
dragged vector vτ associated with τ. If the current 
vector v deviates from vτ for a certain threshold, the 
configuration queue in the animation loop will be 
flushed to empty, and the path is recomputed. Releas-
ing the mouse buttons is treated as special case where 

v becomes null. 
  

5. Implementation 
 

5.1. Connecting to a VRML browser  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: possible goal configurations and their 
modifications 
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In order to make the research result be more port-

able in the future, we choose to modify the open sour-
ce VRML browser implemented based on the Java3D 
SDK library. This SDK and the VRML browser are 
all available for FTP on the public domain.[24] In 
these programs, we have mainly modified the routine 
for processing mouse event and the routine for up-
dating the next viewpoint configuration. At the time 
of our implementation, this VRML browser does not 
support collision detection yet. Therefore, we have 
enhanced the browser with our implementation of 
collision detection routines. They are called in the 
viewpoint update routine to prevent potential colli-
sions even when the path planner is not used. 

 

5.2. The randomized roadmap planner 
 
The roadmap planner has been implemented in the 

Java language. Two files are read by the system. The 
VRML browser reads in the VRM L model of archi-
tectural environment, while the path planner reads in 
the corresponding 2D data file describing obstacle 
configurations. A separated maze editor has also been 
implemented to create both files consistently.  

When the system starts up, we pre-compute the 
C-space obstacles with a well-known linear-time al-
gorithm.[14] We store this information in a 3D bitmap 
of 128x128x128 for future collision detection lookups. 
In the learning phase of the roadmap planner, we per-
form a uniform sampling in the C-space. We uni-
formly divide the space into 8x8x8=512 regions and 
randomly sample up to four free configurations in 
each region. The system gives up sampling on a re-

gion after 20 trials. After the sampling step, the sys-
tem will try to connect all pairs of nodes in the same 
or neighboring regions with collision-free straight-line 
paths. Therefore, there are up to 1024 interconnected 
nodes in the roadmap after the learning phase. 

In the query phase, we first connect qi and qg to 
some nodes qi‘ and qg‘ in the roadmap graph, respec-
tively. Close nodes are tried first. After these starting 
and ending nodes in the graph are found, we use a 
modified A* algorithm to search for a path connecting 
these two nodes. If a feasible path in the graph is 
found, the straight-line segments along the graph path 
will then be concatenated to form the final geometric 
path. A smoothing routine will then be called to re-
duce the path length and increase its quality.  

 

6. Experiments 
 
Ten people were invited to test the implemented 

system. Eight of them are undergraduate students. Six 
of them major in Computer Science but only two use 
VRML browsers frequently. The other two testers do 
not use computers regularly. They are given a short 
instruction about how to use the browser and three 
minutes to warm up before the experiments start. In 
order to compare the effects of incorporating planning 
into the system, an experiment consists of two runs 
(with and without planning) of the same task sequence. 
In order to avoid unnecessary biases created by prac-
tice time, the run with planning is always done first. 

 

6.1. Experimental settings 
 
The experiments were carried out on a regular PC 

with a Celeron 300A processor. The experimental 
scenario consists of six checkpoints in a maze-like 
environment for a user to visit sequentially. A top 
view of this environment is shown in Figure 3. The 
user navigates in the maze with a first-person view 
and the WALK mode provided by the VRML browser. 
A bouncing ball is used to help the users identify the 
targeting checkpoint. An example of the rendered 3D 
scene is shown in Figure 4. In order to assist the user 
in finding the next checkpoint, we also provide a 
2D-layout map, as shown in Figure 5, at the side of 

 
Figure 5: a 2D-layout map of the maze 

 
Figure 3: top view of the maze environment 

 
Figure 4: a snapshot of the VRML browser 
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the VRML browser window. In each experiment, a 
user has to move the viewpoint from checkpoint A 
through checkpoint F as quickly as possible.  

 

6.2. Experimental results 
 
The experimental results consist of two parts: ob-

jective statistic data and subjective user comments. 
The comparisons of the system with and without 
planning are summarized in Table 1. The numbers are 
based on the average of the ten testers. The overall 
times taken to complete the requested task are 243 
and 421 seconds, respectively, for the system run with 
and without planning. The performance speedup for 
the interface with planning is about 73%. In term of 
movement steps, about one third of the steps are saved 
after the planner is used. The cost to pay is that the 
system has to spend about 2.5 seconds in total to pre-
process a given environment and about an average of 
additional 11.5 ms in each step to determine the next 
viewpoint configuration. (It still takes some time for 
the interface without planning to detect collisions.) 
The overall extra time spent on planning only consists 
of 6.21% of the overall execution time.  

The subjective user feedback for the user interface 
with planning is positive in general. Some of the users 
may find the viewpoint hard to control in the begin-
ning (especially for those who like to play games with 
keyboards) but all of them can get used to the control 
very soon. Once they are in a good command of the 
interface, navigation efficiency is greatly improved. In 
summary, they all regard the path-planning capability 

as a very considerate and desirable feature for a 3D 
VRML browser. 

 

6.3. Analysis 
 
In order to understand how path planning is used in 

our walkthrough experiments, we take a closer look at 
the statistic data collected from the ten experiments, 
as listed in Table 2. The number n1 in the second co-
lumn is the number of paths (including type I and type 
II paths in subsection 4.3) and n2 is the number of 
steps generated for execution during an experiment. 
Although the number of calls to the path planner (n4) 
is not very high, total number of steps (n3) in these 
nontrivial paths constitutes a great portion (about one 
third) of n2. Typical paths generated by the planner, 
depicted as sequences of dots, are shown in Figure 6. 
The numbers beside the paths are their lengths. Dur-
ing the navigation, some paths (trivial or nontrivial) 
(n5) were cancelled due to significant deviation from 
the original user intention. The total time spent on 
path searching in the roadmap planner (t1) is only a 
small portion of the overall execution time (t2). Com-
pared to the execution time for the interface without 
planning (t3), the intelligent user interface with plan-
ning indeed results in very consistent and significant 
improvements. 

 

7. Conclusions and Future Work 
 
In this paper, we have proposed a novel approach 

to design an intelligent user interface for architectural 
walkthrough applications. A path planner with a ran-
domized roadmap approach is used to assist users in 
navigating through difficult areas where the users of-
ten get stuck with the traditional user interface. This 
planner has been successfully integrated with the 
low-level control loop in a VRML browser. Our pre-
liminary experimental results show that, with the help 
of the planner, the overall navigation time can be con-
sistently and significantly saved. We believe that this 

 w/ planning w/o planning 
total execution time(sec) 243  421  
no of navigation steps 2498  3941  
preprocessing time (sec) 2.5  0  
avg. time for computing 
the next step (ms) 

18.9 7.4 

Table 1: comparison of walkthrough efficiency 
with or without path planning 

 n1 n2 n3 n4 n5 t1 t2 t3 
u1 746 1644 888 30 19 2.01 129.4 281.5 
u2 790 1592 773 36 17 1.44 124.9 287.5 
u3 908 1653 736 65 50 3.05 209.2 471.4 
u4 1476 2592 1117 87 63 3.15 220.5 427.7 
u5 2737 3106 361 36 13 0.98 239.9 332.1 
u6 2451 3070 640 36 14 1.30 261.4 335.5 
u7 2091 2430 295 72 84 3.39 249.4 332.1 
u8 1430 2419 972 59 39 2.66 238.1 585.2 
u9 1861 2988 1024 104 93 4.25 370.9 514.8 

u10 2942 3486 523 50 23 1.61 384.9 607.4 
avg. 1743 2498 733 58 42 2.38 242.9 420.7 

n1: no of generated paths  n2: no of generated steps 
n3: no of planner generated steps n4: no of planning called 
n5: no of paths being cancelled during their executions 
t1: total path-planning time (sec) 
t2: total execution time with planning (sec) 
t3: total execution time without planning (sec) 

Table 2: statistic data of ten users using the intelli-
gent interface 

 
Figure 6: planner generated non-trivial paths  
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intelligent user interface is effective because it dele-
gate some of the geometric reasoning tasks to the 
computer while retaining the advantages of direct 
manipulation.  

There exist limitations on our current implementa-
tion. For example, we currently assume a static and 
bounded workspace in our path planner to facilitate 
roadmap construction. However, it is more desirable 
(for path planning in general) to be able to consider 
dynamic and unbounded workspace possibly with 
incremental roadmap construction. The effect of path 
planning on the walkthrough type of 3D interface de-
sign deserves further studies. For example, more ex-
periments need to be carried out for different tasks, on 
different virtual scenes, and on different systems of 
various computing powers. We believe that the effects 
will even more significant for complex scenes on 
slower machines. 
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