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ABSTRACT

Navigation is a critical task for agents populating virtual worlds. In the last years, numerous solutions have been proposed
to solve the path planning problem in order to enhance the autonomy of virtual agents. Those solutions mainly focused
on static environments, eventually populated with dynamic obstacles. However, dynamic objects are usually more than
just obstacles as they can be used by an agent to reach new locations. In this paper, we propose an online path planning
algorithm in dynamically changing environments with unknown evolution such as physically based-environments. Our
method represents objects in terms of obstacles but also in terms of navigable surfaces. This representation allows our
algorithm to find temporal paths through disconnected and moving platforms. We will also show that the proposed method
also enables several kinds of adaptations such as avoiding moving obstacles or adapting the agent postures to environmental
constraints. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last decades, path planning has been widely stud-
ied, and numerous solutions for static environments,
eventually populated with dynamic obstacles, have been
proposed. Our method focuses on a virtual agent navi-
gating in dynamically changing environments where the
evolution of the topology is not known a priori. This kind
of situation can be found in environments by using phys-
ical simulation. The physics engine makes the environ-
ment highly dynamic, and the motions of objects cannot
be known a priori, which makes the navigation task com-
plicated. Moreover, we address a new kind of path planning
problem by considering dynamic objects not only as obsta-
cles but also as navigable parts of the environment. Those
navigable elements can thus be used to access new loca-
tions. For instance, a plank can act as a bridge and connect
two disconnected regions. Using the agent navigation capa-
bilities, our method builds a dual representation of objects
that identifies their impact in terms of accessibility and
obstruction. This representation is used to characterize and
track over time topological modifications in a global repre-
sentation of the environment’s topology. Our method, using
temporal properties, is thus able to identify complex paths

through disconnected and moving surfaces. Those paths
are detected even if the surfaces are never directly con-
nected all together at the same time. We will show that
our solution is able to solve such complex cases in real
time by generating collision-free paths and adapting the
agent’s postures among dynamic obstacles. Moreover, we
will present a method to efficiently handle and represent
highly dynamic objects, which navigability and obstruction
properties are modified at runtime. This property makes
our algorithm suitable for interactive applications where
an external user, a script or a physics engine may act on
the environment at runtime. Such an approach is useful
in several application fields, including video games where
non-player agents are evolving in dynamic environments
where changes are not always known a priori.

In the following, we first introduce the related works.
We then describe the precomputation steps associated to
the agent representation and the dual representation of the
dynamic objects. We also present how to update this dual
representation in the context of highly dynamic objects.
The next section focuses on the use of those representa-
tions to plan a path and adapt postures of a virtual agent
evolving in a dynamic environment. Finally, we show and
analyze some results.
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2. RELATED WORK

Path planning has been widely studied in robotics where
spatial reasoning provides robots with a crucial function-
ality : autonomy of navigation [1,2]. Given a character,
its navigation capabilities and a description of the envi-
ronment, the purpose is to plan a collision-free path for
the character between two given locations. The general
path planning problem is known to be PSPACE-complete
[3,4]. Its formulation relies on the exploration of the con-
figuration space (C-space). This C-space is defined as an
N -dimensional space for which each of the N axes rep-
resents a degree of freedom (DOF) of the character. The
C-space is generally divided in C-free, a subspace con-
taining valid configurations, and C-obstacle, a subspace
containing obstructed ones. Thus, planning a collision-
free path for a character is equivalent to finding a path
in C-free that links two configurations. The basic planning
problem focuses on finding a valid path in a static environ-
ment. Proposed methods mostly fall into two categories:
cell decomposition and roadmaps. The cell decomposi-
tion methods are either approximate, representing a subset
of C-free with cells of predefined shapes [5,6], or exact,
representing C-free using trapezoidal decomposition,
Delaunay triangulations and variants [7,8]. Probabilistic
methods, such as probabilistic roadmaps (PRMs) [9,10] or
random trees (RRTs) [11,12], explore C-free by computing
a roadmap in which nodes are non-colliding configurations
randomly sampled over C-free, and edges are collision-free
paths linking two nodes. Most of the methods generally
consider navigation in a connected environment. However,
few methods focused on static but disconnected environ-
ments [10,13,14]. The need of planning paths in dynam-
ically changing environments arises in many application
fields. Most of the proposed methods focus on avoiding
dynamic obstacles. On the one hand, some methods con-
sider that obstacles movements are known and use this
knowledge to guide and speed-up the path planning pro-
cess [15,16]. On the other hand, fast replanning techniques
are used when an obstacle is detected along the planned
trajectory [17,18]. Various methods based on PRMs [17]
or RRTs [19] have been proposed. This kind of methods
validates precomputed edges of the roadmaps during plan-
ning to take dynamic changes into account [20]. By taking
time into account, other methods propose to define safe
intervals where the agent can wait safely during the naviga-
tion and use those intervals to handle path planning among
dynamic obstacles [21]. Velocity obstacles and extensions
[22] propose a reactive approach that continuously updates
the agent speed to generate trajectories avoiding collisions
with dynamic obstacles. Finally, methods based on rapidly
computed generalized Voronoï diagram have also been
proposed [23,24].

To our knowledge, the first method handling space-time
planning in a dynamic and disconnected environment has
been recently proposed by Levine et al. [25]. The singular-
ity of both methods is that moving platforms are no longer
considered as obstacles but also as navigable regions used

during navigation. However, their method is based on the
strong hypothesis that the objects movements have known
trajectories. This involves that the future evolutions of the
environment are always known and thus that accessibilities
between objects can be precomputed. On the basis of this
hypothesis, they compute their path using a trial-and-error
solver, trying different motion controllers until a correct
motion is found.

Our method handles space-time planning in a dynam-
ically changing environment with no a priori knowledge
on the topology evolution. By observing this evolution
at runtime, our algorithm characterizes and track topo-
logical relations over time. On the basis of this informa-
tion, our method is able to compute in real time paths
among moving and disconnected surfaces while avoiding
dynamic obstacles and adapting the character’s postures to
environmental constraints.

3. AGENTS AND OBJECTS
REPRESENTATIONS

Our path planning problem considers a non-flying agent
evolving in a dynamic environment composed of non-
deformable objects. No assumption is made on the
spatio-temporal evolution of the environment that is only
assumed to be observable. The dimension of the associated
C-Space includes the agent’s DOF and the moving objects
DOF. Considering all of those DOF creates a large search
space. Thus, in order to improve the path planning prob-
lem performance, the complexity of this problem must
be reduced. To propose a solution compatible with inter-
active applications, the agent representation is simplified
using bounding volumes, which reduce the number of
DOF of the problem. Using the bounding volumes, we
extract a dual representation of the objects that precisely
defines the impact of an object in terms of accessibility
and obstructions. Finally, in the context of dynamic envi-
ronments, this representation will have to be dynamically
updated in order to keep a consistent representation of
the topology.

3.1. The Agent and its
Navigation Capabilities

Considering that the motion planning problem is PSPACE-
complete, bounding volumes are often used to represent an
agent. Indeed, it decouples the animation and the path plan-
ning process that simplifies and speeds-up the path plan-
ning process as it reduces the number of DOFs [13,15,22].
We consider an agent with navigation capabilities mainly
constrained on the floor. In order to speed-up path plan-
ning and decouple it from the animation process, we thus
represent our agent by using bounding cylinder. For each
navigation capabilityMi , we define a cylinder Ci , centered
on the agent’s root, which bounds its geometry when play-
ing the motion i . Given the cylinder Ci bounding a naviga-
tion capability of our agent, a configuration in this C-space
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represents the 3D-position of the agent’s root located at
the bottom center of the cylinder. When the agent’s ani-
mation changes from a motion i to a motion j , we com-
pute a transition cylinder Ti ;j bounding the postures of
the agent during the transition. In order to handle an agent
navigating on slopes [26], we associate to each navigation
capability Mi and to each transition an interval of naviga-
ble slopes in which the agent is able to use this capability.
Jump motions are particular as an agent could get hurt
when it jumps down or might not be able to reach a high
location. To model this, the jump motion is labeled with
a maximum vertical impulse speed, a maximum horizon-
tal impulse speed, and a maximum vertical landing speed.
Finally, in order to represent an agent subject to the grav-
ity, we assume that this agent follows a ballistic trajectory
when jumping.

3.2. Augmenting geometry with
Interaction Volumes

The considered environments, composed of geometric ele-
ments, define the workspace where the agent has to navi-
gate. A configuration space (C-space), representing all the
possible configurations between the agent and the environ-
ment, is associated to this workspace. The whole environ-
ment is thus represented in this C-space where the entire
path planning process is performed. We thus introduce

the definition of Interaction Volumes, which characterize
subspaces of this C-space.

3.2.1. Definition of the Interaction Volumes.

From the agent’s point of view, a geometric object
impacts on the local topology in three different ways. It
can obstruct a region, present navigable surfaces or cre-
ate an access to other areas. Obstruction, navigability, and
accessibility properties rely on the agent’s navigation capa-
bilities. Using those capabilities, we extract a dual repre-
sentation of objects, called the Interaction Volumes, which
characterizes feasible, colliding, and reachable configura-
tions of the C-space. We then associate to each surface a
precomputed roadmap. This roadmap allows to capture the
local topology of all of the navigable surfaces in a single
structure ready for path planning requests.

In the following, we assume that the (X; Y ) axes rep-
resent the horizontal plane, and that the Z-axis is the
height axis of the environment. Considering an object O
and a navigation capability Mk associated to the motion
k bounded by the cylinder Ck , we define three types of
Interaction Volumes (Figure 1): the Forbidden Volume, the
Navigable Surface, and the Accessibility Volume.

Forbidden Volumes, denoted Vf .O;Mk/, represent
the set of configurations where the agent collides with
the object O . This volume is obtained by extruding the
object’s shape along the Z-axis using the height of the
cylinder Ck associated to Mk . As shown in Figure 1, this

Figure 1. Interaction Volumes: given an original geometry O and a cylinder C bounding a considered motion capability, we compute
three Interaction Volumes: the Navigable Surface Ns.O;C/, the Accessibility Volume Va.O;C/, and the Forbidden Volume Vf.O;C/.

On the right, the dual representation of O that is inserted in the C-space.

Figure 2. Accessibility Volume definition : regarding a character and its jumping capability, we extract a profile representing its
potential jumps from a start configuration. The last scheme presents the profile extraction along edges of Ns.O;C/.
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shape is then extended along the (X; Y )-axes by using the
cylinder’s radius.

Navigable Surfaces, denotedNs.O;Mk/, represent the
regions where the agent can stand. In order to navigate on
uneven floor, we tag each navigation capabilityMk with an
interval of navigable slopes. We use this interval to deter-
mine whether or not an agent is able to stand on the con-
sidered surface. Ns.O;Mk/ is computed by grouping all
triangles of the object’s mesh with admissible slopes minus
configurations lying in Vf .O;Mk/. A simple Navigable
Surface is shown in Figure 1.

Accessibility Volumes, denoted Va.O;Mk/, contain all
configurations reachable from Ns.O;Mk/ when using the
jump capability Mk . First, the maximum reachable height
is used to extrude Ns.O;Mk/ along the height axis. Sec-
ond, given the jump motion characteristics, we compute
an Accessibility Profile (Figure 2) by randomly sampling
the set of admissible jumping trajectories and computing
the convex hull shape of the sampled trajectories. This pro-
file is then extruded along the borders of Ns.O;Mk/ to
finalize Va.O;Mk/.

3.2.2. Local Roadmap Generation.

Because the global structure of a Navigable Sur-
face Ns.O;Mk/ does not change, a local roadmap is

precomputed on each surface. Different methods have
been proposed in the literature to build a roadmap. We
chose the well-known PRMs method to create local
roadmaps [9]. We thus randomly sample configurations inS
k Ns.O;Mk/ and annotate each sampled configuration

c with the set of motion capabilities that are valid, that is,
fk; c 2 Ns.O;Mk/g. Each sample is then connected to
its k-nearest neighbors iff the configurations share at least
one common motion capability Mk and that a collision
free linear path lying in Ns.O;Mk/ exists. An example
of roadmap’s construction is shown Figure 3. In this exam-
ple, two navigation capabilities are used, and we can see
how the roadmap is able to capture all of the navigation
opportunities of the agent.

3.3. Dynamic Objects Representation

By considering dynamic environments, we create situa-
tions in which objects configurations evolve over time.
This evolution will sometime be unpredictable for the
agent. For example, the configuration of an environment
using a physics engine changes depending on the actions
of a user. In such an environment, we can easily imagine an
object falling while rotating on itself, or an element that the
user translates on the floor. Augmenting dynamic objects

Figure 3. Roadmap definition. Two navigation are considered: M1 and M2. A Navigable Surface is associated each of them and con-
figuration of the roadmap are sampled in the union of those Navigable Surfaces. Edges are then build when a collision-free path lying

in at least one Navigable Surface exists.

90 Comp. Anim. Virtual Worlds 2012; 23:87–99 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



T. Lopez, F. Lamarche and T.-Y. Li Space-time planning in changing environments

with Interaction Volumes allows identifying their topolog-
ical impact. However, in order to handle highly dynamic
elements, those Interaction Volumes have to be updated
from time to time during the simulation.

A dynamic object possesses six DOF in the virtual
environment. Those six DOF consist in three translations
(along the axes X , Y , and Z) and three rotations ( 
around X , � around Y , and � around Z). Three different
cases arise.

(1) Translations modify the position of the object but
not its orientation. In this case, the same transla-
tions are applied directly on the Interaction Vol-
umes in order to update their positions in the
configuration space but their definition will remain
the same. Then the Interaction Volumes are persis-
tent to translation.

(2) A � rotation modifies the object as well, but would
not change the inclination of the Navigable Sur-
faces. Thus, the Interaction Volumes definition does
not change, and the � rotation is applied to those
volumes in the C-Space.

(3) Finally,  and � rotations change the definition of
the Interaction Volumes as they modify the angle
between the object and the vertical axis of the envi-
ronment. This modification impacts on the Navi-
gable Surface definition and, consequently, on the
Accessibility Volume. As the Forbidden Volumes are
defined by an extrusion of the object’s shape along
the vertical axis of the environment, this definition
change too.

When a  or � rotation modifies an object configura-
tion, new Interaction Volumes are computed to preserve
a valid representation of the topological impact of this
object. In order to simplify these updates and the creation
of new Interaction Volumes, we make the observation that
an object rotating around the X or Y axis can hardly be
navigable during its rotation and will become navigable
again after its stabilization. Consequently, a rotating object
will be considered only as an obstacle during its rotation as
the agent would not be able to use it for its navigation task.
Thus, as long as this object is rotating, we simply represent
it as a Forbidden Volume to denote this property. When

the object stabilizes on the ground, new Interaction Vol-
umes corresponding to its current situation are defined and
reassigned to this object.

Moreover, in order to reduce the number of new defini-
tion of Interaction Volumes, we associate to the global sim-
ulation a rotation parameter �. Thus, if the object rotated
of an angle inferior to � since the last Interaction Vol-
umes update, those volumes are kept. On the opposite, if
this angle is superior to �, the volumes are discarded and
new volumes are created. This parameter lightens the cost
due to the update of those volumes but also scatters those
creations over time as the dynamic objects might certainly
not rotate with the same angular speed.

The update of those Forbidden Volumes is shown
Figure 4. We observe the new Interaction Volumes asso-
ciated to the object during its rotation. While the object
is rotating (center), it is represented by a simple Forbid-
den Volume and the new Interaction Volumes are computed
after stabilization.

3.4. Properties of the Representation

The Interaction Volumes represent the impact of objects
on their local environment’s topology. Identifying a topo-
logical relation between two objects in the workspace
is thus equivalent to detecting an intersection between
their respective Interaction Volumes in the C-space. This
important property enables an accurate characterization of
topological relations and is a key point in our method.
Given two objects (Oi ,Oj ) and a motion capability
m, accessibility and obstruction relations are defined
as follows:

� Accessibility: A.Oi ; Oj ; Cm/, holds when Va.Oi ;

Cm/\Ns.Oj ; Cm/¤ ; and characterizes an access
from Oi to Oj with the motion capability m. This
relation is not a bijection as the agent may have
more difficulties to climb on objects than to go down
(Figure 2).

� Obstruction: O.Oi ; Oj ; Cm/, holds when Vf .Oi ;
Cm/ \ Va.Oj ; Cm/ ¤ ;, that is, Oi obstructs
some navigable parts of Oj for the given navigation
capability m.

Figure 4. Rotation of a simple box around the X or Y axis. The Interaction Volumes are updated during the movement. The object
is represented with a single Forbidden Volume during its motion, and the three Interaction Volumes are computed again when it

becomes stable.

Comp. Anim. Virtual Worlds 2012; 23:87–99 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

91



Space-time planning in changing environments T. Lopez, F. Lamarche and T.-Y. Li

The identification of those relations coupled with local
roadmaps allows us to locate the topological impact of
the detected relations at runtime. An accessibility relation
results in a connection between two distinct roadmaps,
through a jumping capability, whereas an obstruction inval-
idates some parts of the roadmap. Obstruction relations
have an impact on obstacle avoidance but also on posture
adaptation as an obstruction might, for instance, force the
agent to adopt a special capability to navigate along a path.
Consider, for example, an agent endowed with a walk (w1)
and a crouched walk (w2) capabilities and navigating on an
object O . Now, suppose that a beam B appears in front of
the agent. In this situation, Ns.O;w1/ \ Vf .B;w1/ ¤
; and Ns.O;w2/ \ Vf .B;w2/ D ;. Therefore, an
obstruction relation is detected between O and B for the
navigation capability w1 but not for w2. Consequently,
the agent is forced to adapt its posture and to use the
crouched walking.

Finally, by reducing our problem to a three dimensional
C-Space, several requests relating to path planning can be
efficiently handled with classical algorithms proposed in
the computer graphics community. The identification of
topological relations is thus reduced to a collision detec-
tion between Interaction Volumes and the path validation
to a simple ray casting between the local path and the
relevant Forbidden Volumes. Those properties are inten-
sively used in our algorithm.

4. FINDING A PATH IN A
DYNAMIC ENVIRONMENT

In dynamic environments, the topology evolves and mov-
ing objects act as obstacles, bridges or elevators for
instance. Topological relations need to be tracked in
order to take them into account during navigation. We
now present how the Interaction Volumes are used to
track topology modifications. Moreover, taking time into

account allows the agent to accurately avoid moving obsta-
cles and detect moving platforms that link disconnected
surfaces. This path planning problem is solved by a two-
level path planner. The first level computes a path between
Navigable Surfaces at the topological level, whereas the
second level plans a local path on each Navigable Surface.

4.1. Representing the Global Topology

In order to identify the global topology, we introduce the
Topological Graph. This directed graph aims at building
a global representation of the environment’s topology by
representing each object as a node and each topologi-
cal relation as a link between the two involved objects
(Figure 5). This graph allows to represent and character-
ize all of the topological relations existing in the environ-
ment at a given time and can be viewed as a snapshot of
the topology. As described previously, detected collisions
between Interaction Volumes allow us to identify topo-
logical relations existing at a given time. Thanks to the
3-dimensionality of the Interaction Volumes, those colli-
sions are detected using a tuned collision detection (CD)
algorithm [27]. This algorithm reports interaction between
relevant Accessibility Volumes, Navigable Surfaces, and
Forbidden Volumes. Every time a relation is detected by
the CD, the corresponding edge is created in the Topolog-
ical Graph, and this edge is labeled with the nature of the
detected relation: accessibility or obstruction.

Nevertheless, this graph is a coarse representation of
the global topology as it only identifies relations between
pairs of objects. Thus, the impact of a relation on another,
such as the impact of an obstruction relation on an acces-
sibility relation is not represented, although it can mod-
ify it. Regarding the definition of accessibility, an object
Oj is reachable from Oi with a jump capability Mk iff
Va.Oi ;Mk/ \ Ns.Oj ;Mk/ ¤ ;. To refine this rela-
tion and avoid potential collisions with Forbidden Vol-
umes, we randomly sample a set of jumps from Oi to Oj
as follows:

Figure 5. Topological Graph construction. Characterization of an accessibility (a), and of an obstruction (b). Example of a more complex
situation (c) with four detected relations.
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(1) a target configuration ct is selected from the local
roadmap (PRM) associated to Ns.Oj ;Mk/;

(2) the nearest source configuration cs belonging to the
local roadmap associated to Ns.Oi ;Mk/ is then
selected (Figure 6(a)); and

(3) the second order polynomial corresponding to the
unique ballistic trajectory passing through those
configurations is then defined by

P .X/D�
1

2
gX2C v0zX C zs

where X represents the abscissa of the agent on
the trajectory, whereas P .X/ corresponds to its alti-
tude. This trajectory remains by definition in the
vertical plane defined by cs and ct . In the equa-
tion, g represents the gravity constant, v0z is the
vertical impulse speed associated to this trajec-
tory, and zs corresponds to the height of the start
configuration cs .

The obtained jump is then validated iff the impulse and
landing speeds satisfy the constraints associated to the
jumping capability Mk and the trajectory does not col-
lide with a Forbidden Volume (Figure 6(b)). Each validated
jump is then stored in the corresponding accessibility edge
of the Topological Graph.

4.2. Tracking a Dynamic Topology

The Topological Graph builds a static representation of
the environment topology. However, considering the tem-
poral aspect, topological relations between dynamic ele-
ments are going to evolve during simulation. By taking
time into account, we can thus identify temporal properties
about accessibilities and obstructions between dynamic
elements. All of those temporal indications are useful
to find paths between dynamic elements and using their
movements to travel from place to place. The Topologi-
cal Graph is then augmented with temporal information.
This allows the agent to build, with no knowledge a pri-
ori, its own representation of the dynamic environment by
observing the evolution of topological relations over time.
Thus, edges are labeled with the number of times the rela-
tion was valid, the mean validity and non-validity times
of the relation and the mean relative speed of the objects.
The mean validity time of the relation and the mean rela-
tive speed of the objects give an estimate of the relation’s
stability. The sum of mean validity and non-validity times
gives an estimate of the periodicity of the relation and of
the waiting time. Finally, the number of times the relation
was valid allows the Topological Graph to automatically
identify and characterize periodic and punctual relations
between objects.

The Topological Graph thus contains statistical infor-
mation about validity and stability of observed topologi-
cal relations. This is crucial as we use this information to
characterize relations over time. Thanks to the coupling

Figure 6. Reachability from Oi to Oj (top view). For each sam-
pled trajectory, a source configuration cs and a target con-
figuration ct are selected in the corresponding roadmaps. A
second order polynomial, representing the jump capability, is

then computed to link those two configurations.

with the CD algorithm, the Topological Graph is auto-
matically updated creating an anytime representation of
the topology. Moreover, the temporal information associ-
ated to relations enables to automatically represent peri-
odical relations in space and time (Figure 7), but also to
better characterize relations in order to optimize the path
planning phase. When considering highly dynamic envi-
ronments, such as physical worlds, we have seen in the
previous section that Interaction Volumes associated to an
object might be deleted and recomputed. However, the
Topological Graph represents relations between objects
regardless of their associated volumes. Thus, a new defini-
tion of those volumes does not change the representation of
the object in the graph. Nevertheless, old topological rela-
tions between dynamic objects might become invalid and
never be valid again. In order to prune those useless rela-
tions, a time parameter can be used to delete those relation
after a given invalidity period.

As mentioned before, a sampling process is used to vali-
date or invalidate static and periodic accessibility relations.
Within dynamic environments, this process can be costly as
relations evolve over time. To limit the impact of this sam-
pling on performance, a sampling budget is used at each
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Figure 7. Navigation through disconnected surfaces using the Topological Graph.

time step of the simulation. This budget is then distributed
among the currently identified accessibility relations.

4.3. A Two-Level Path Planner

In order to find a path in the environment, we designed
a two-level path planner. Our planner first selects Navi-
gable Surfaces that must be crossed by the agent, using
the Topological Graph and the temporal information. Then
local trajectories are computed on each surface using the
associated local roadmaps. Those local trajectories handle
posture adaptation and obstacle avoidance.

In order to identify Navigable Surfaces on the way,
we first filter the Topological Graph. This filtering pro-
cess discard invalidated accessibility relations for which a
feasible jump has not been identified. For safety reasons,
we also invalidate accessibility relations for which either
the mean relative speed of the objects exceeds a given
threshold or the mean validity time is lower than a time
threshold. This time threshold is important as it makes a
difference between an agent that takes risks (low thresh-
old) and an agent that prefers safer paths (high threshold).
To compute the global path, a Dijkstra algorithm is run on
this filtered view of the Topological Graph. Costs associ-
ated to the accessibility relations are set to their periodic-
ity (sum of the mean validity and non-validity time) for
dynamic relations and to an �-value for stable relations
(relations that are always valid). This cost function tends to
favor paths through stable links and minimizing the waiting
time. The global path planner finally provides a sequence
of Navigable Surfaces leading the agent toward the
global destination.

Once a global path is computed, the local path planner
has to generate local trajectories on each roadmap asso-
ciated to the identified Navigable Surface while handling
obstacle avoidance and posture adaptation. This local path
planning process is run every time the agent reaches a new
Navigable Surface. To compute this trajectory in the local
PRM, we use a multi-target A* algorithm that starts from
the current configuration of the agent and finds a path to
the nearest target configuration. The target can be either
the global target or the source of a jump to access the
next Navigable Surface. An edge of the roadmap is valid
if at least one navigation capability Mk associated to the

edge does not collide with local Forbidden Volumes and
if Mk is compatible with the navigation capability used
to reach this edge. Edges validity is checked during the
local planning in the space-time domain. In this domain,
we anticipate objects positions using a linear extrapolation
of their current movements over time [17]. As the evolution
is not known a priori, we limit the impact of the extrapola-
tion error by setting a maximum extrapolation time. If the
time needed to reach the currently explored configuration
is greater than this limit, dynamic obstacles are not con-
sidered as the agent is not able to anticipate collisions that
far in time. This approximation creates an error that will
be handled later during navigation. Once the path is com-
puted, the agent follows it. If a new potential collision is
detected during navigation, a local replanning is executed
to handle errors due to mis-predictions of the obstacles tra-
jectories. When a local target is reached, the agent waits
to access the next surface. Using the jump properties, a
jump decision is taken by extrapolating the position of the
targeted surface and nearby obstacles. If the landing site
lies on the targeted surface and the trajectory does not col-
lide with obstacles, the agent jumps. The local planning
is repeated on each identified surface until the final target
is reached.

Based on the Topological Graph and on the analysis of
temporal information, our two-level planner solves com-
plex planning problems. Consider, for instance, an envi-
ronment composed of different moving and disconnected
platforms. Those platforms may have periodic movements
and give accessibility from time to time to other surfaces
in the environment. However, if the temporal aspect is not
taken into account, the path planning process is run on
a static representation of the topology. This static repre-
sentation corresponds to a snapshot of the topology at the
time the path planning request was sent. The addition of
the temporal statistics allows, with no addition of a pri-
ori knowledge, to automatically detect periodical relations
between dynamic elements but also to characterize them.
Thus, it makes possible to easily identify a sequence of
moving platforms disconnected in space but connected to
each other from time to time and that can be crossed to
reach a given goal. The search space is also reduced for the
local planner that only plans local trajectories and adapts
postures on relevant Navigable Surfaces.
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Figure 8. We present our environments: the living room (a) and the disconnected environment (f). Some results show such as: navi-
gation between disconnected and moving surfaces (b), the dynamic obstacle avoidance (c), posture adaptation regarding the motion

capabilities (d), and the environmental constraints (e).

Figure 9. Physics 1 : This is a test environment using a physics simulation. The elements start in configuration (a), the user can then
add new elements on the fly. The agent finally has to navigate in this environment and find its path among the navigable surfaces of

the physical elements (b).

Figure 10. Physics 2 : Elements are added on the fly by the user. The agent has to find its path among those elements and to use
them as soon as they are added to reach new places. A large number of elements is used to test the performance of our method.
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Table I. Benchmarks.

Environment Collision Topological graph Average path Obstruction tests
name detection (ms) update (ms) planning time (ms) (% path planning)

Disconnected Env 0.48 0.06 7.8 –
Living-room 14.12 6.46 93.98 67.77
Physics 1 10.01 0.71 25 37.5
Physics 2 14.15 1.25 311 94.6

5. RESULTS

In order to evaluate our method, we designed several test-
ing environments. Those environments aim to highlight
different aspects of our works. All of them are composed
of dynamic elements. In some environments, dynamic ele-
ments have scripted or random trajectories. The last envi-
ronments are using a physics engine in order to increase
the dynamicity of the scene and the agent can add on the
fly new elements to this environment.

In our test cases, the agent uses three navigation capa-
bilities: sliding on the ground while (1) standing or (2)
crouching, and (3) jumping. The jumping capability allows
the agent to reach disconnected navigable surfaces of the
workspace. The heights of the bounding cylinders are set
to 50 cm for capabilities (1) and (3), 15 cm for capability
(2). The radius of those cylinders is set to 20 cm for capa-
bility (1) and (3), 30 cm for capability (2). The maximum
speed for motions (1) and (3) has been set to 2 m:s�1 and
the one for the motion (2) has been set to 1 m:s�1. When
using the jumping capability, our agent is able to jump
with maximum vertical and horizontal impulse speeds of
2 m:s�1, and we limit the landing speed to 3 m:s�1. For
the three navigation capabilities, the maximum navigable
slope has been set to 30ı. We evaluated our method by
using different dynamic environments.

Disconnected environment. This environment is com-
posed of disconnected and moving platforms (Figure 8(f)).
By jumping from platform to platform when accessibili-
ties are identified, the agent is able to reach every parts
of the environment. This example shows how temporal
information is used to detect paths in space and time
even though the Navigation Surfaces are never directly
connected. There is no obstacle in the environment.

Living room. This environment, presented in
Figure 8(a), demonstrates the various properties of our
method. It is composed of numerous complex objects:
tables, chairs, sofas, shelves, plants... Those objects all
act as obstacles or navigation surfaces and some can con-
straint the agent’s postures. The environment is highly con-
strained leaving only a few room for navigation. Moreover,
flying books are used as elevators that connect the two
floors together. This environment focuses on connections
between distinct surfaces, path obstructions, replanning
and posture adaptation during navigation.

Physics 1. This environment, shown in Figure 9,
uses a physics engine during the simulation. A couch and
some boxes are falling in a hole, and the agent has to

find its way between those dynamic elements to reach
its destination.

Physics 2. In this environment, using a physics engine,
the user adds elements on the fly, and the agent has to
find its way between those elements. The navigation task
becomes harder and harder as the number of elements in
the environment increase as shown in Figure 10. A lot of
obstructions are detected during navigation. Moreover, by
throwing elements in the environment, the user modifies
the configuration of present elements. This test environ-
ment has been created in order to test the robustness of
our algorithm.

Benchmarks have been realized on an Intel(R)
Core(TM)2 Extreme, CPU X7900, 2.80 GHz. We used
Bullets Physics CD library to identify Interaction Vol-
umes collisions. Our implementation is currently mono-
threaded. Our benchmarks results are presented in Table I.
This table summarizes average times of: the CD between
Interaction Volumes, the Topological Graph update, the
connections computation between Navigable Surfaces, and
the path planning process. The last column presents the
percentage of time spent in testing the validity of roadmap
edges during the path planning step. Results presented in
Table I show that our algorithm performs topology detec-
tion and processes path planning requests at interactive
frame rates in our testing environments even in the envi-
ronments using a physics engine for simulation. A video
presenting our results is also available online†.

Our algorithm continuously tracks the collisions
between Interaction Volumes to identify the evolution of
the topology. This process performance is directly corre-
lated with the CD library that is used. The time spent in the
graph update is negligible but Table I shows that the use
of numerous objects with complex geometries (such as in
the living room) decreases algorithm performance. In order
to reduce the time spent in the collision detection, simpli-
fied versions of original meshes (called collision meshes)
are often used in real time physics simulations. We could
extend those methods to simplify the shapes of the Interac-
tion Volumes. In the Physics 2 environments, path planning
is really costly and most of the time ( 95% ) is spent in
the collision detection. The use of another collision detec-
tion library or of collision detection algorithms parallelized
on CPU/GPU may help to improve those performances
[28,29]. Second, we defined a dynamic path planner that is

†http://people.irisa.fr/Thomas.Lopez/demoCAVW.html
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able to provide temporal trajectories through disconnected
surfaces while avoiding predicted collisions. However, the
local path planner is the most time consuming process
as it needs to test the validity of trajectories using the
future obstacle locations. The validity tests use the majority
the computation time. Whenever an unexpected obstacle
appears on the agent’s trajectory, a new local path plan-
ning request is emitted. To increase performance and avoid
redundant computation, we could try to reuse previously
computed paths by using a planning algorithm such as a
D*-like, which could be adapted to our problem.

6. CONCLUSION AND
FUTURE WORK

In this paper, we presented our approach to online path
planning in dynamic environments with unknown evo-
lution. The originality of our approach is that dynamic
objects are not only obstacles, but can also be used to navi-
gate and reach previously unreachable locations. The char-
acterization offered by Interaction Volumes makes possible
to track the evolution of the environment’s topology. Our
method can be viewed as an observation-based approach
in which the dynamic topology representation is built by
observing the evolution of the environment’s topology over
time and by deducing temporal properties. The identifica-
tion of those properties allows the agent to use the inner
motion of dynamic objects during its navigation in order
to reach new locations. Our method is thus able to iden-
tify paths through surfaces that are connected together
over time, but which are not connected all together at a
given time. Moreover, the performances of our algorithm
show that the method is suitable for interactive applications
with highly dynamic objects in complex virtual worlds.
Finally, our solution allows to handle any kind of envi-
ronments with no addition of a priori knowledge on the
evolution of the world. Using the navigation capabilities of
the agent, the corresponding representation of the environ-
ment is automatically computed and updated over time by
using observed evolutions.

The collision detection algorithm, used for topology
tracking and local path planning, is a major bottleneck.
However, some recent work focusing either on collision
detection parallelization on CPU/GPU [28,29] or on paral-
lelized planning algorithms [30,31] are promising for scal-
ing our algorithm to very complex environments. Another
aspect is that the character may sometimes miss the tar-
geted surface and fall down due to an extrapolation error,
if the targeted object has chaotic movements for instance.
This can be viewed as a limitation of our technique or as
something realistic, because the same case can arise in a
real situation.

Future work will focus on scalability studies of the
method. We are interested in path planning of different
characters with individual motion capabilities in the same
environment at the same time. It would also be interest-
ing to combine our approach with the one proposed by

Levine et al. [25]. The combination of their motion con-
trollers, producing paths through disconnected and mov-
ing navigable surfaces, with our representation, handling
dynamic environments with no a priori knowledge could
lead to an efficient method. Finally, we intend to analyze
the challenging problem of endowing a virtual character
with the ability to move objects so as to access a previ-
ously unreachable location (by creating stacks of objects
for instance). The key idea is to enhance existing solutions
to Navigation Among Movable Obstacles problem [32]
with the capabilities of our method in terms of topology
characterization and path planning.
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